Faculty Opinions recommendation of Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells.

Author(s):  
David Zenisek ◽  
Christina Joselevitch
2018 ◽  
Author(s):  
Shai Sabbah ◽  
Carin Papendorp ◽  
Elizabeth Koplas ◽  
Marjo Beltoja ◽  
Cameron Etebari ◽  
...  

SummaryWe have explored the synaptic networks responsible for the unique capacity of intrinsically photosensitive retinal ganglion cells (ipRGCs) to encode overall light intensity. This luminance signal is crucial for circadian, pupillary and related reflexive responses light. By combined glutamate-sensor imaging and patch recording of postsynaptic RGCs, we show that the capacity for intensity-encoding is widespread among cone bipolar types, including OFF types.Nonetheless, the bipolar cells that drive ipRGCs appear to carry the strongest luminance signal. By serial electron microscopic reconstruction, we show that Type 6 ON cone bipolar cells are the dominant source of such input, with more modest input from Types 7, 8 and 9 and virtually none from Types 5i, 5o, 5t or rod bipolar cells. In conventional RGCs, the excitatory drive from bipolar cells is high-pass temporally filtered more than it is in ipRGCs. Amacrine-to-bipolar cell feedback seems to contribute surprisingly little to this filtering, implicating mostly postsynaptic mechanisms. Most ipRGCs sample from all bipolar terminals costratifying with their dendrites, but M1 cells avoid all OFF bipolar input and accept only ectopic ribbon synapses from ON cone bipolar axonal shafts. These are remarkable monad synapses, equipped with as many as a dozen ribbons and only one postsynaptic process.


1999 ◽  
Vol 16 (6) ◽  
pp. 1133-1144 ◽  
Author(s):  
E.D. MILLER ◽  
M.N. TRAN ◽  
G.-K. WONG ◽  
D.M. OAKLEY ◽  
R.O.L. WONG

Bipolar cells are not only important for visual processing but input from these cells may underlie the reorganization of ganglion cell dendrites in the inner plexiform layer (IPL) during development. Because little is known about the development of bipolar cells, here we have used immunocytochemical markers and dye labeling to identify and follow their differentiation in the neonatal ferret retina. Putative cone bipolar cells were immunoreacted for calbindin and recoverin, and rod bipolar cells were immunostained for protein kinase C (PKC). Our results show that calbindin-immunoreactive cone bipolar cells appear at postnatal day 15 (P15), at which time their axonal terminals are already localized to the inner half of the IPL. By contrast, recoverin-immunoreactive cells with terminals in the IPL are present at birth, but many of these cells may be immature photoreceptors. By the second postnatal week, recoverin-positive cells resembling cone bipolar cells were clearly present, and with increasing age, two distinct strata of immunolabeled processes occupied the IPL. PKC-containing rod bipolar cells emerged by the fourth postnatal week and at this age have stratified arbors in the inner IPL. The early bias of bipolar axonal arbors in terminating in the inner or outer half of the IPL is confirmed by dye labeling of cells with somata in the inner nuclear layer. At P10, several days before ribbon synapses have been previously observed in the ferret IPL, the axon terminals of all dye-labeled bipolar cells were clearly stratified. The results suggest that bipolar cells could provide spatially localized interactions that are suitable for guiding dendritic lamination in the inner retina.


2003 ◽  
Vol 553 (3) ◽  
pp. 895-909 ◽  
Author(s):  
Jinjuan Cui ◽  
Yu‐Ping Ma ◽  
Stuart A. Lipton ◽  
Zhuo‐Hua Pan

Cell Reports ◽  
2020 ◽  
Vol 32 (11) ◽  
pp. 108144
Author(s):  
Xuhui Dong ◽  
Hua Yang ◽  
Xiangtian Zhou ◽  
Xiaoling Xie ◽  
Dongliang Yu ◽  
...  

2010 ◽  
Vol 28 (1) ◽  
pp. 39-50 ◽  
Author(s):  
ULRIKE GRÜNERT ◽  
PATRICIA R. JUSUF ◽  
SAMMY C.S. LEE ◽  
DUNG THAN NGUYEN

AbstractTwo morphological types of melanopsin-expressing ganglion cells have been described in primate retina. Both types show intrinsic light responses as well as rod- and cone-driven ON-type responses. Outer stratifying cells have their dendrites close to the inner nuclear layer (OFF sublamina); inner stratifying cells have their dendrites close to the ganglion cell layer (ON sublamina). Both inner and outer stratifying cells receive synaptic input via ribbon synapses, but the bipolar cell types providing this input have not been identified. Here, we addressed the question whether the diffuse (ON) cone bipolar type DB6 and/or rod bipolar cells contact melanopsin-expressing ganglion cells. Melanopsin containing ganglion cells in marmoset (Callithrix jacchus) and macaque (Macaca fascicularis) retinas were identified immunohistochemically; DB6 cells were labeled with antibodies against the carbohydrate epitope CD15, rod bipolar cells were labeled with antibodies against protein kinase C, and putative synapses between the two cells types were identified with antibodies against piccolo. For one inner cell, nearly all of the DB6 axon terminals that overlap with its dendrites in the two-dimensional space show areas of close contact. In vertical sections, the large majority of the areas of close contact also contain a synaptic punctum, suggesting that DB6 cells contact inner melanopsin cells. The output from DB6 cells accounts for about 30% of synapses onto inner melanopsin cells. Synaptic contacts between rod bipolar axons and inner dendrites were not observed. In the OFF sublamina, about 10% of the DB6 axons are closely associated with dendrites of outer cells, and in about a third of these areas, axonal en passant synapses are detected. This result suggests that DB6 cells may also provide input to outer melanopsin cells.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yan Fu ◽  
Baoke Hou ◽  
Chuanhuang Weng ◽  
Weiping Liu ◽  
Jiaman Dai ◽  
...  

2010 ◽  
Vol 68 ◽  
pp. e268
Author(s):  
Fuminobu Tamalu ◽  
Yumiko Umino ◽  
Yuning Sun ◽  
Eduardo Solessio ◽  
Shu-Ichi Watanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document