scholarly journals Reductions in Calcium Signaling Limit Inhibition to Diabetic Retinal Rod Bipolar Cells

2019 ◽  
Vol 60 (12) ◽  
pp. 4063 ◽  
Author(s):  
Johnnie M. Moore-Dotson ◽  
Erika D. Eggers
2003 ◽  
Vol 553 (3) ◽  
pp. 895-909 ◽  
Author(s):  
Jinjuan Cui ◽  
Yu‐Ping Ma ◽  
Stuart A. Lipton ◽  
Zhuo‐Hua Pan

Cell Reports ◽  
2020 ◽  
Vol 32 (11) ◽  
pp. 108144
Author(s):  
Xuhui Dong ◽  
Hua Yang ◽  
Xiangtian Zhou ◽  
Xiaoling Xie ◽  
Dongliang Yu ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yan Fu ◽  
Baoke Hou ◽  
Chuanhuang Weng ◽  
Weiping Liu ◽  
Jiaman Dai ◽  
...  

2010 ◽  
Vol 68 ◽  
pp. e268
Author(s):  
Fuminobu Tamalu ◽  
Yumiko Umino ◽  
Yuning Sun ◽  
Eduardo Solessio ◽  
Shu-Ichi Watanabe ◽  
...  

2018 ◽  
Vol 526 (12) ◽  
pp. 1896-1909 ◽  
Author(s):  
Ji-Jie Pang ◽  
Zhuo Yang ◽  
Roy A. Jacoby ◽  
Samuel M. Wu

2019 ◽  
Author(s):  
Colin M. Wakeham ◽  
Phillip A. Wilmarth ◽  
Jennifer M. Cunliffe ◽  
John E. Klimek ◽  
Gaoying Ren ◽  
...  

AbstractAdjusting to a wide range of light intensities is an essential feature of retinal rod bipolar cell (RBC) function. While persuasive evidence suggests this modulation involves phosphorylation by protein kinase C-alpha (PKCα), the targets of PKCα phosphorylation in the retina have not been identified. PKCα activity and phosphorylation in RBCs was examined by immunofluorescence confocal microscopy using a conformation-specific PKCα antibody and antibodies to phosphorylated PKC motifs. PKCα activity was dependent on light and expression of TRPM1, and RBC dendrites were the primary sites of light-dependent phosphorylation. PKCα-dependent retinal phosphoproteins were identified using a phosphoproteomics approach to compare total protein and phosphopeptide abundance between phorbol ester-treated wild type and PKCα knockout (PKCα-KO) mouse retinas. Phosphopeptide mass spectrometry identified over 1100 phosphopeptides in mouse retina, with 12 displaying significantly greater phosphorylation in WT compared to PKCα-KO samples. The differentially phosphorylated proteins fall into the following functional groups: cytoskeleton/trafficking (4 proteins), ECM/adhesion (2 proteins), signaling (2 proteins), transcriptional regulation (3 proteins), and homeostasis/metabolism (1 protein). Two strongly differentially expressed phosphoproteins, BORG4 and TPBG, were localized to the synaptic layers of the retina, and may play a role in PKCα-dependent modulation of RBC physiology. Data are available via ProteomeXchange with identifier PXD012906.SignificanceRetinal rod bipolar cells (RBCs), the second-order neurons of the mammalian rod visual pathway, are able to modulate their sensitivity to remain functional across a wide range of light intensities, from starlight to daylight. Evidence suggests that this modulation requires the serine/threonine kinase, PKCα, though the specific mechanism by which PKCα modulates RBC physiology is unknown. This study examined PKCα phosophorylation patterns in mouse rod bipolar cells and then used a phosphoproteomics approach to identify PKCα-dependent phosphoproteins in the mouse retina. A small number of retinal proteins showed significant PKCα-dependent phosphorylation, including BORG4 and TPBG, suggesting a potential contribution to PKCα-dependent modulation of RBC physiology.HighlightsPKCα is a major source of phosphorylation in retinal RBC dendrites and its activity in RBCs is light dependent.Proteins showing differential phosphorylation between phorbol ester-treated wild type and PKCα-KO retinas belong to the following major functional groups: cytoskeleton/trafficking (4 proteins), ECM/adhesion (2 proteins), signaling (2 proteins), transcriptional regulation (3 proteins), and homeostasis/metabolism (1 protein).The PKCα-dependent phosphoproteins, BORG4 and TPBG, are present in the synaptic layers of the retina and may be involved in PKCα-dependent modulation of RBC physiology.


Sign in / Sign up

Export Citation Format

Share Document