Faculty Opinions recommendation of Altered histone acetylation is associated with age-dependent memory impairment in mice.

Author(s):  
Carol Barnes
Science ◽  
2010 ◽  
Vol 328 (5979) ◽  
pp. 753-756 ◽  
Author(s):  
S. Peleg ◽  
F. Sananbenesi ◽  
A. Zovoilis ◽  
S. Burkhardt ◽  
S. Bahari-Javan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mi Kyoung Seo ◽  
Jung Goo Lee ◽  
Sung Woo Park

AbstractEarly life stress (ELS) causes long-lasting changes in gene expression through epigenetic mechanisms. However, little is known about the effects of ELS in adulthood, specifically across different age groups. In this study, the epigenetic modifications of p11 expression in adult mice subjected to ELS were investigated in different stages of adulthood. Pups experienced maternal separation (MS) for 3 h daily from postnatal day 1 to 21. At young and middle adulthood, behavioral test, hippocampal p11 expression levels, and levels of histone acetylation and methylation and DNA methylation at the hippocampal p11 promoter were measured. Middle-aged, but not young adult, MS mice exhibited increased immobility time in the forced swimming test. Concurrent with reduced hippocampal p11 levels, mice in both age groups showed a decrease in histone acetylation (AcH3) and permissive histone methylation (H3K4me3) at the p11 promoter, as well as an increase in repressive histone methylation (H3K27me3). Moreover, our results showed that the expression, AcH3 and H3Kme3 levels of p11 gene in response to MS were reduced with age. DNA methylation analysis of the p11 promoter revealed increased CpG methylation in middle-aged MS mice only. The results highlight the age-dependent deleterious effects of ELS on the epigenetic modifications of p11 transcription.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marta Maglione ◽  
Gaga Kochlamazashvili ◽  
Tobias Eisenberg ◽  
Bence Rácz ◽  
Eva Michael ◽  
...  

AbstractAging is associated with functional alterations of synapses thought to contribute to age-dependent memory impairment (AMI). While therapeutic avenues to protect from AMI are largely elusive, supplementation of spermidine, a polyamine normally declining with age, has been shown to restore defective proteostasis and to protect from AMI in Drosophila. Here we demonstrate that dietary spermidine protects from age-related synaptic alterations at hippocampal mossy fiber (MF)-CA3 synapses and prevents the aging-induced loss of neuronal mitochondria. Dietary spermidine rescued age-dependent decreases in synaptic vesicle density and largely restored defective presynaptic MF-CA3 long-term potentiation (LTP) at MF-CA3 synapses (MF-CA3) in aged animals. In contrast, spermidine failed to protect CA3-CA1 hippocampal synapses characterized by postsynaptic LTP from age-related changes in function and morphology. Our data demonstrate that dietary spermidine attenuates age-associated deterioration of MF-CA3 synaptic transmission and plasticity. These findings provide a physiological and molecular basis for the future therapeutic usage of spermidine.


2016 ◽  
Vol 41 (9) ◽  
pp. 2223-2232 ◽  
Author(s):  
Ruifeng Duan ◽  
Xiaohua Liu ◽  
Tianhui Wang ◽  
Lei Wu ◽  
Xiujie Gao ◽  
...  

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiao-Yu Sun ◽  
Teng Zheng ◽  
Xiu Yang ◽  
Le Liu ◽  
Shen-Shen Gao ◽  
...  

Abstract Background Inflammation can induce cognitive dysfunction in patients who undergo surgery. Previous studies have demonstrated that both acute peripheral inflammation and anaesthetic insults, especially isoflurane (ISO), are risk factors for memory impairment. Few studies are currently investigating the role of ISO under acute peri-inflammatory conditions, and it is difficult to predict whether ISO can aggravate inflammation-induced cognitive deficits. HDACs, which are essential for learning, participate in the deacetylation of lysine residues and the regulation of gene transcription. However, the cell-specific mechanism of HDACs in inflammation-induced cognitive impairment remains unknown. Methods Three-month-old C57BL/6 mice were treated with single versus combined exposure to LPS injected intraperitoneally (i.p.) to simulate acute abdominal inflammation and isoflurane to investigate the role of anaesthesia and acute peripheral inflammation in cognitive impairment. Behavioural tests, Western blotting, ELISA, immunofluorescence, qRT-PCR, and ChIP assays were performed to detect memory, the expressions of inflammatory cytokines, HDAC2, BDNF, c-Fos, acetyl-H3, microglial activity, Bdnf mRNA, c-fos mRNA, and Bdnf and c-fos transcription in the hippocampus. Results LPS, but not isoflurane, induced neuroinflammation-induced memory impairment and reduced histone acetylation by upregulating histone deacetylase 2 (HDAC2) in dorsal hippocampal CaMKII+ neurons. The hyperexpression of HDAC2 in neurons was mediated by the activation of microglia. The decreased level of histone acetylation suppressed the transcription of Bdnf and c-fos and the expressions of BDNF and c-Fos, which subsequently impaired memory. The adeno-associated virus ShHdac2, which suppresses Hdac2 after injection into the dorsal hippocampus, reversed microglial activation, hippocampal glutamatergic BDNF and c-Fos expressions, and memory deficits. Conclusions Reversing HDAC2 in hippocampal CaMKII+ neurons exert a neuroprotective effect against neuroinflammation-induced memory deficits.


2011 ◽  
Vol 7 ◽  
pp. S660-S660
Author(s):  
Ikuroh Ohsawa ◽  
Kiyomi Nishimaki ◽  
Norie Murakoshi ◽  
Takashi Yokota ◽  
Shigeo Ohta

Sign in / Sign up

Export Citation Format

Share Document