Faculty Opinions recommendation of Paradoxical effect of increased diastolic Ca(2+) release and decreased sinoatrial node activity in a mouse model of catecholaminergic polymorphic ventricular tachycardia.

Author(s):  
Robert Rose
Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Hiroko Wakimoto ◽  
Ronny Alcalai ◽  
Lei Song ◽  
Michael Arad ◽  
Christine E Seidman ◽  
...  

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmia syndrome caused by mutations in the ryanodine receptor (RyR2) or calsequestrin-2 (CASQ2) genes and characterized by exercise or emotional stress-induced sudden death. Beta-adrenergic blockers are only partially effective and other agents have not been widely tested. Recent studies have shown that CPVT is mediated by increased Ca 2+ leak through the RyR2 channel. Our aim was to determine whether agents that inhibit intracellular Ca 2+ leak can effectively prevent CPVT. Methods: The efficacy of intraperitoneal (IP) propranolol (1mcg/g), Mg 2+ (0.002mEq/g), verapamil (8 mcg/g) and diltiazem (8 mcg/g) were tested both in vivo and in vitro using CASQ2 mutant mouse CPVT model. In vivo studies included ambulatory ECG recordings at rest and following epinephrine stress (0.4 mcg/g IP) at baseline and after study drug administration. Experiments for each drug were performed on separate days to avoid confounding effects. In vitro studies included intracellular Ca 2+ transient analysis on isolated cardiomyocytes from mutant mice with and without epinephrine (5.5 μM). Results: All 4 drugs restored sinus rhythm and reduced the frequency of VT episodes induced by epinephrine in CASQ2 mutant mice. Only verapamil completely prevented epinephrine-induced VT in 87% of the mice (p<0.01). Cardiomyocyte studies in basal conditions revealed that Mg 2+ and verapamil inhibited sarcomere contraction and normalized the prolonged Ca 2+ reuptake period in CASQ2 mutants, but did not decrease baseline Ca 2+ peak height. Epinephrine-stressed mutant myocytes had increased diastolic Ca 2+ levels, lower Ca 2+ peak height and spontaneous SR Ca 2+ release events that were partially prevented by verapamil and Mg 2+ . Verapamil was more effective than Mg 2+ in reducing the frequency of spontaneous Ca 2+ releases induced by epinephrine. Conclusions: All 4 agents can inhibit ventricular arrhythmia in CPVT mouse model; however verapamil appears most effective in preventing arrhythmia in vivo and in modifying intracellular abnormal calcium handling. Calcium antagonists might have therapeutic value in CPVT and other RyR2-mediated arrhythmias and should be considered for human clinical studies.


2017 ◽  
Vol 112 (3) ◽  
pp. 541a
Author(s):  
Yue-Yi Wang ◽  
Pietro Mesirca ◽  
Elena Marqués-Sulé ◽  
Alexandra Zahradnikova Jr ◽  
Olivier Villejoubert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document