Faculty Opinions recommendation of Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21.

Author(s):  
William Vainchenker
2012 ◽  
Vol 109 (43) ◽  
pp. 17579-17584 ◽  
Author(s):  
A. Roy ◽  
G. Cowan ◽  
A. J. Mead ◽  
S. Filippi ◽  
G. Bohn ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3197-3207 ◽  
Author(s):  
Kirsteen J. Campbell ◽  
Mary L. Bath ◽  
Marian L. Turner ◽  
Cassandra J. Vandenberg ◽  
Philippe Bouillet ◽  
...  

Abstract Diverse human cancers with poor prognosis, including many lymphoid and myeloid malignancies, exhibit high levels of Mcl-1. To explore the impact of Mcl-1 overexpression on the hematopoietic compartment, we have generated vavP-Mcl-1 transgenic mice. Their lymphoid and myeloid cells displayed increased resistance to a variety of cytotoxic agents. Myelopoiesis was relatively normal, but lymphopoiesis was clearly perturbed, with excess mature B and T cells accumulating. Rather than the follicular lymphomas typical of vavP-BCL-2 mice, aging vavP-Mcl-1 mice were primarily susceptible to lymphomas having the phenotype of a stem/progenitor cell (11 of 30 tumors) or pre-B cell (12 of 30 tumors). Mcl-1 overexpression dramatically accelerated Myc-driven lymphomagenesis. Most vavP-Mcl-1/ Eμ-Myc mice died around birth, and transplantation of blood from bitransgenic E18 embryos into unirradiated mice resulted in stem/progenitor cell tumors. Furthermore, lethally irradiated mice transplanted with E13 fetal liver cells from Mcl-1/Myc bitransgenic mice uniformly died of stem/progenitor cell tumors. When treated in vivo with cyclophosphamide, tumors coexpressing Mcl-1 and Myc transgenes were significantly more resistant than conventional Eμ-Myc lymphomas. Collectively, these results demonstrate that Mcl-1 overexpression renders hematopoietic cells refractory to many cytotoxic insults, perturbs lymphopoiesis and promotes malignant transformation of hematopoietic stem and progenitor cells.


Cell Research ◽  
2008 ◽  
Vol 18 (S1) ◽  
pp. S101-S101
Author(s):  
Hong Qian ◽  
Elisabeth Georges-Labouesse ◽  
Alexander Nyström ◽  
Anna Domogatskaya ◽  
Karl Tryggvason ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 66 ◽  
Author(s):  
Jenna Richter ◽  
Edouard Stanley ◽  
Elizabeth Ng ◽  
Andrew Elefanty ◽  
David Traver ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1226-1226
Author(s):  
Kirby D Johnson ◽  
Xin Gao ◽  
Rajendran Sanalkumar ◽  
Amy P Hsu ◽  
Myung-Jeom Ryu ◽  
...  

Abstract Abstract 1226 How transcriptional and post-transcriptional mechanisms control the levels/activities of master developmental regulators has fundamental importance for understanding complex developmental processes such as hematopoiesis and associated pathological disorders. GATA-2 is an essential regulator of hematopoiesis, and GATA-2 mutations characterize heritable disease associated with myelodysplastic syndrome and acute myeloid leukemia, including MonoMAC (syndrome of monocytopendia, B and NK cell lymphopenia, and mycobacterial, fungal and viral infection). However, many questions remain unanswered regarding mechanisms underlying GATA-2 regulation and function. We demonstrated that a MonoMAC patient harbors a 28 bp deletion within GATA2 intron 5 that eliminates a conserved E-box and 5 base pairs of an 8 base pair spacer between the E-box and a conserved GATA motif, which constitutes an E-box-GATA composite element. This composite element resides within the +9.5 kb “GATA switch site” that binds GATA-2 and GATA-1 in the transcriptionally active and repressed states, respectively, and confers hematopoietic and vascular endothelial enhancer activities in transgenic mouse embryos. Importantly, this patient lacked mutations in the GATA2 coding sequence characteristic of other MonoMAC patients, but exhibited prototypical MonoMAC. To elucidate the mechanism underlying the function of the +9.5 composite element, we generated a targeted deletion of the murine element, which yielded embryonic lethality at E13 to E14. Prior to death, +9.5−/− mice exhibit reduced liver size, hemorrhaging, and edema. Nucleated primitive red cells are abundant in the +9.5−/− embryos, in contrast to Gata2 knockout mice, which die at approximately E10.5 from anemia due to failure of primitive and definitive hematopoiesis. Furthermore, primitive erythroid (EryP) colony assays conducted with yolk sacs revealed that the mutation does not affect primitive erythroid precursor functionality. However, the +9.5 deletion strongly reduced Gata2 expression at sites of definitive hematopoiesis, including the fetal liver (8.1 fold, P < 0.004) and cultured explants of the hematopoietic stem cell-generating Aortic Gonadal Mesonephric (AGM) region (4.0 fold, P < 0.001). The homozygous mutant animals exhibited a nearly complete loss of hematopoietic stem cells as determined by flow cytometry (20-fold reduction of Lin-Mac1+CD41-CD48-CD150+Sca+Kit+ cells, P < 0.005) and competitive repopulation (complete loss, P < 0.02) assays, as well as progenitors as determined by colony assays (BFU-E, 60-fold reduction, P < 0.002; CFU-GM, 8.8-fold reduction, P < 0.0001; CFU-GEMM, 19-fold reduction, P < 0.001). To investigate the underlying mechanisms, we developed an allele-specific Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) assay with heterozygous fetal liver cells to test whether the deletion influences Gata2 chromatin accessibility at the +9.5 region. The deletion significantly reduced (8.4 fold reduction, P < 0.001) chromatin accessibility at this region within the mutant allele, while the wild type allele was unaffected. Thus, any potential remaining cis-elements are insufficient to confer chromatin accessibility, supporting a model in which the transcription factors that normally occupy this GATA switch site lose the capacity to access their respective cis-elements in the context of the mutant allele. Our human and murine studies have therefore revealed a cis-element indispensable for the regulation of Gata2 expression in multiple developmental contexts and necessary for the generation of the definitive hematopoietic stem/progenitor cell compartment. As additional elements are likely to confer Gata2 expression in distinct contexts, including primitive erythropoiesis, we have implemented a multi-faceted effort to identify such elements and to compare their mechanisms with that of the +9.5 site, which will provide fundamental insights into genetic mechanisms controlling normal and malignant hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document