cell compartment
Recently Published Documents


TOTAL DOCUMENTS

1019
(FIVE YEARS 179)

H-INDEX

84
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Gillian A. Lang ◽  
Kaylee Norman ◽  
Souwelimatou Amadou Amani ◽  
Tyler M. Shadid ◽  
Jimmy D. Ballard ◽  
...  

Adjuvant combinations may enhance or broaden the expression of immune responses to vaccine antigens. Information on whether established Alum type adjuvants can be combined with experimental CD1d ligand adjuvants is currently lacking. In this study, we used a murine Clostridioides difficile immunization and challenge model to evaluate Alum (Alhydrogel™), α-galactosylceramide (α-GC), and one of its analogs 7DW8-5 singly and in combination as vaccine adjuvants. We observed that the Alum/α-GC combination caused modest enhancement of vaccine antigen-specific IgG1 and IgG2b responses, and a broadening to include IgG2c that did not significantly impact overall protection. Similar observations were made using the Alum/7DW8-5 combination. Examination of the impact of adjuvants on NKT cells revealed expansion of invariant NKT (iNKT) cells with modest expansion of their iNKTfh subset and little effect on diverse NKT (dNKT) cells. Side effects of the adjuvants was determined and revealed transient hepatotoxicity when Alum/α-GC was used in combination but not singly. In summary these results showed that the Alum/α-GC or the Alum/7DW8-5 combination could exert distinct effects on the NKT cell compartment and on isotype switch to produce Th1-driven IgG subclasses in addition to Alum/Th2-driven subclasses. While Alum alone was efficacious in stimulating IgG-mediated protection, and α-GC offered no apparent additional benefit in the C. difficile challenge model, the work herein reveals immune response features that could be optimized and harnessed in other vaccine contexts.


2022 ◽  
Vol 1 (6) ◽  
pp. 149-162
Author(s):  
Rara Inggarsih ◽  
Ella Amalia ◽  
Septi Purnamasari

The cell membrane plays an important role in cell traffic because it functions to secrete various molecules. The selective transport system allows the movement of molecules into or out of the cell compartment. By controlling the movement of substances from one compartment to another, membranes exert a strong influence on metabolic pathways. Cell membranes are composed of proteins and lipids with a very important function in maintaining the rhythm of circulation and cell transport. In addition, the cell membrane also plays a role in maintaining the integrity and relationship, and communication of cells.


2022 ◽  
Author(s):  
Vivek Naranbhai ◽  
Anusha Nathan ◽  
Clarety Kaseke ◽  
Cristhian Berrios ◽  
Ashok Khatri ◽  
...  

The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from infection and vaccine-induced antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. Here we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals (~21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4+ and CD8+ memory T cell responses confirmed these findings and reveal that reduced recognition to Omicron spike is primarily observed within the CD8+ T cell compartment. Booster vaccination substantially enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nadine Stetter ◽  
Wiebke Hartmann ◽  
Marie-Luise Brunn ◽  
Stephanie Stanelle-Bertram ◽  
Gülsah Gabriel ◽  
...  

Helminths still infect a quarter of the human population. They manage to establish chronic infections by downmodulating the immune system of their hosts. Consequently, the immune response of helminth-infected individuals to vaccinations may be impaired as well. Here we study the impact of helminth-induced immunomodulation on vaccination efficacy in the mouse system. We have previously shown that an underlying Litomosoides sigmodontis infection reduced the antibody (Ab) response to anti-influenza vaccination in the context of a systemic expansion of type 1 regulatory T cells (Tr1). Most important, vaccine-induced protection from a challenge infection with the 2009 pandemic H1N1 influenza A virus (2009 pH1N1) was impaired in vaccinated, L. sigmodontis-infected mice. Here, we aim at the restoration of vaccination efficacy by drug-induced deworming. Treatment of mice with Flubendazole (FBZ) resulted in elimination of viable L. sigmodontis parasites in the thoracic cavity after two weeks. Simultaneous FBZ-treatment and vaccination did not restore Ab responses or protection in L. sigmodontis-infected mice. Likewise, FBZ-treatment two weeks prior to vaccination did not significantly elevate the influenza-specific Ig response and did not protect mice from a challenge infection with 2009 pH1N1. Analysis of the regulatory T cell compartment revealed that L. sigmodontis-infected and FBZ-treated mice still displayed expanded Tr1 cell populations that may contribute to the sustained suppression of vaccination responses in successfully dewormed mice. To outcompete this sustained immunomodulation in formerly helminth-infected mice, we finally combined the drug-induced deworming with an improved vaccination regimen. Two injections with the non-adjuvanted anti-influenza vaccine Begripal conferred 60% protection while MF59-adjuvanted Fluad conferred 100% protection from a 2009 pH1N1 infection in FBZ-treated, formerly L. sigmodontis-infected mice. Of note, applying this improved prime-boost regimen did not restore protection in untreated L. sigmodontis-infected mice. In summary our findings highlight the risk of failed vaccinations due to helminth infection.


2021 ◽  
pp. S227-S247
Author(s):  
M BARNOVA ◽  
A BOBCAKOVA ◽  
V URDOVA ◽  
R KOSTURIAK ◽  
L KAPUSTOVA ◽  
...  

COVID-19 (Coronavirus Disease) is an infectious disease caused by the coronavirus SARS-CoV-2 (Severe acute respiratory syndrome Coronavirus 2), which belongs to the genus Betacoronavirus. It was first identified in patients with severe respiratory disease in December 2019 in Wuhan, China. It mainly affects the respiratory system, and in severe cases causes serious lung infection or pneumonia, which can lead to the death of the patient. Clinical studies show that SARS-CoV-2 infection in critical cases causes acute tissue damage due to a pathological immune response. The immune response to a new coronavirus is complex and involves many processes of specific and non-specific immunity. Analysis of available studies has shown various changes, especially in the area of specific cellular immunity, including lymphopenia, decreased T cells (CD3+, CD4+ and CD8+), changes in the T cell compartment associated with symptom progression, deterioration of the condition and development of lung damage. We provide a detailed review of the analyses of immune checkpoint molecules PD-1, TIM-3, LAG-3 CTLA-4, TIGIT, BTLA, CD223, IDO-1 and VISTA on exhausted T cells in patients with asymptomatic to symptomatic stages of COVID-19 infection. Furthermore, this review may help to better understand the pathological T cell immune response and improve the design of therapeutic strategies for patients with SARS-CoV-2 infection.


2021 ◽  
Author(s):  
Jeremy J Ratiu ◽  
Qun Wang ◽  
Naren Mehta ◽  
Melissa J Harnois ◽  
Devon DiPalma ◽  
...  

AbstractProduction of a diverse peripheral T cell compartment requires massive expansion of the bone marrow progenitors that seed the thymus. There are two main phases of expansion during T cell development, following T lineage commitment at the DN2 stage and following successful rearrangement and selection for functional TCRβ chains in DN3 thymocytes, which promotes development of DN4 cells to the DP stage. Signals driving expansion of DN2 thymocytes are well studied, however, factors regulating the proliferation and survival of DN4 cells remain poorly understood. Here, we uncover an unexpected link between the transcription factor Zfp335 and control of cGAS/STING-dependent cell death in post-β-selection DN4 thymocytes. Zfp335 controls survival by sustaining expression of Ankle2, which suppresses cGAS/STING-dependent cell death. Together, this study identifies Zfp335 as a key transcription factor controlling the survival of proliferating post-β-selection thymocytes and demonstrates a key role for the cGAS/STING pathway driving apoptosis of developing T cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Na Sun ◽  
Marija Trajkovic-Arsic ◽  
Fengxia Li ◽  
Yin Wu ◽  
Corinna Münch ◽  
...  

Abstract Background Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest malignancies to date. The impressively developed stroma that surrounds and modulates the behavior of cancer cells is one of the main factors regulating the PDAC growth, metastasis and therapy resistance. Here, we postulate that stromal and cancer cell compartments differentiate in protein/lipid glycosylation patterns and analyze differences in glycan fragments in those compartments with clinicopathologic correlates. Results We analyzed native glycan fragments in 109 human FFPE PDAC samples using high mass resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometric imaging (MALDI-FT-ICR-MSI). Our method allows detection of native glycan fragments without previous digestion with PNGase or any other biochemical reaction. With this method, 8 and 18 native glycans were identified as uniquely expressed in only stromal or only cancer cell compartment, respectively. Kaplan–Meier survival model identified glycan fragments that are expressed in cancer cell or stromal compartment and significantly associated with patient outcome. Among cancer cell region-specific glycans, 10 predicted better and 6 worse patient survival. In the stroma, 1 glycan predicted good and 4 poor patient survival. Using factor analysis as a dimension reduction method, we were able to group the identified glycans in 2 factors. Multivariate analysis revealed that these factors can be used as independent survival prognostic elements with regard to the established Union for International Cancer Control (UICC) classification both in tumor and stroma regions. Conclusion Our method allows in situ detection of naturally occurring glycans in FFPE samples of human PDAC tissue and highlights the differences among glycans found in stromal and cancer cell compartment offering a basis for further exploration on the role of specific glycans in cancer–stroma communication.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Isabelle Brock ◽  
Nicole Eng ◽  
Anne Maitland

Abstract Background Mast cells are closely associated with epithelium, serving as sentinels responsible for the recognition of tissue injury and coordination of the initial inflammatory response. Upon detection of the injured cell content, mast cells then tailor the release of preformed and newly produced chemical mediators to the detected challenge, via an array of pathogen receptors. In addition to immunoglobulin E receptor-triggered mast cell activation, commonly referred to as allergic or atopic disorders, non-immunoglobulin E receptor mediated mast cell activation follows engagement of toll-like receptors, immunoglobulin G receptors, and complement receptors. Upon containment of the extrinsic challenge, acute inflammation is downregulated, and repair of the injured tissue ensues. The mast cell compartments must return to a baseline steady state to remain tolerant towards self-antigens and harmless entities, including environmental conditions, to prevent unnecessary immune activation and chronic hypersensitivity disorders. Over the past 50 years, an increasing number of patients are experiencing episodes of aberrant mast cell activation, not associated with allergen-specific mast cell disease or systemic mastocytosis. This led to proposed diagnostic criteria of mast cell activation syndrome. Mast cell activation syndrome is a heterogeneous disorder, defined by a combination of (1) recurrent symptoms typical of mast cell activation, (2) an increase of validated mast cell derived mediators, and (3) response to treatment with mast cell stabilizing or mast cell mediator-targeted therapies. Onset of mast cell activation syndrome ostensibly reflects the loss of tolerance in the mast cell compartment to nonthreatening entities and nonhazardous environmental conditions. The etiology of chronic mast cell dysregulation and associated intolerance to self-antigens or harmless entities is not well understood, but a growing number of studies point to exposure of the epithelial borders, which leads to inappropriate or excessive mast cell activation or impaired resolution of acute inflammation following neutralization of the identified pathogen. Case presentation Here we present a case of adult onset mast cell activation syndrome following scombroid poisoning. Scombroid toxicity is usually a self-limited illness, but there are individuals who have been shown to have severe symptoms or persistent illness following histamine fish poisoning. We describe a 74-year-old Caucasian woman, with a history of drug-induced urticaria, who developed a constellation of hypersensitivity illnesses consistent with the diagnosis of mast cell activation syndrome after ingestion of tainted fish. Conclusion Mast cell activation disease causes problems of increased complexity in children and adults. The increased prevalence and severity of mast cell activation disease has been attributed to dramatic changes in our lifestyles and modern living environments. These changes likely impact the integrity of the epithelial barriers, leading to loss of tolerance in the mast cell compartment. Here, we present a case of a nonatopic, 74-year-old female who developed mast cell activation disease after exposure to a potent environmental toxin. Mast cell activation disease commonly involves several organ systems, with patients often referred to a succession of different specialists. This results in delayed diagnosis and suboptimal care. Instead, early recognition of mast cell activation disease would lead to better outcomes. We review the literature, describing the diagnostic criteria for mast cell activation disorders that can improve recognition of this multiorgan system syndrome. Further research is needed into the interaction of epithelial barrier disruption and the dysregulation of the immune system.


Sign in / Sign up

Export Citation Format

Share Document