scholarly journals Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance

Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3197-3207 ◽  
Author(s):  
Kirsteen J. Campbell ◽  
Mary L. Bath ◽  
Marian L. Turner ◽  
Cassandra J. Vandenberg ◽  
Philippe Bouillet ◽  
...  

Abstract Diverse human cancers with poor prognosis, including many lymphoid and myeloid malignancies, exhibit high levels of Mcl-1. To explore the impact of Mcl-1 overexpression on the hematopoietic compartment, we have generated vavP-Mcl-1 transgenic mice. Their lymphoid and myeloid cells displayed increased resistance to a variety of cytotoxic agents. Myelopoiesis was relatively normal, but lymphopoiesis was clearly perturbed, with excess mature B and T cells accumulating. Rather than the follicular lymphomas typical of vavP-BCL-2 mice, aging vavP-Mcl-1 mice were primarily susceptible to lymphomas having the phenotype of a stem/progenitor cell (11 of 30 tumors) or pre-B cell (12 of 30 tumors). Mcl-1 overexpression dramatically accelerated Myc-driven lymphomagenesis. Most vavP-Mcl-1/ Eμ-Myc mice died around birth, and transplantation of blood from bitransgenic E18 embryos into unirradiated mice resulted in stem/progenitor cell tumors. Furthermore, lethally irradiated mice transplanted with E13 fetal liver cells from Mcl-1/Myc bitransgenic mice uniformly died of stem/progenitor cell tumors. When treated in vivo with cyclophosphamide, tumors coexpressing Mcl-1 and Myc transgenes were significantly more resistant than conventional Eμ-Myc lymphomas. Collectively, these results demonstrate that Mcl-1 overexpression renders hematopoietic cells refractory to many cytotoxic insults, perturbs lymphopoiesis and promotes malignant transformation of hematopoietic stem and progenitor cells.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


2017 ◽  
Vol 216 (7) ◽  
pp. 2217-2230 ◽  
Author(s):  
Gregoire Stik ◽  
Simon Crequit ◽  
Laurence Petit ◽  
Jennifer Durant ◽  
Pierre Charbord ◽  
...  

Extracellular vesicles (EVs) have been recently reported as crucial mediators in cell-to-cell communication in development and disease. In this study, we investigate whether mesenchymal stromal cells that constitute a supportive microenvironment for hematopoietic stem and progenitor cells (HSPCs) released EVs that could affect the gene expression and function of HSPCs. By taking advantage of two fetal liver–derived stromal lines with widely differing abilities to maintain HSPCs ex vivo, we demonstrate that stromal EVs play a critical role in the regulation of HSPCs. Both supportive and nonsupportive stromal lines secreted EVs, but only those delivered by the supportive line were taken up by HSPCs ex vivo and in vivo. These EVs harbored a specific molecular signature, modulated the gene expression in HSPCs after uptake, and maintained the survival and clonogenic potential of HSPCs, presumably by preventing apoptosis. In conclusion, our study reveals that EVs are an important component of the HSPC niche, which may have major applications in regenerative medicine.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 14-14 ◽  
Author(s):  
Christopher R. Cogle ◽  
Manbok Kim ◽  
Masmudur Rahman ◽  
Edward W Scott ◽  
Grant McFadden ◽  
...  

Abstract Abstract 14 High dose chemotherapy followed by autologous blood and marrow transplantation (ABMT) has been used to treat patients with acute myeloid leukemia (AML), but leukemia relapse rates remain high. One reason is the potential contamination of marrow with leukemic stem and progenitor cells (LSPCs). Purging autologous hematopoietic grafts of LSPCs prior to transplant serves as a viable strategy for increasing transplant efficacy in these cases; however, previous attempts using cytotoxic agents and cell culture techniques have generally resulted in loss of normal stem and progenitor cell numbers and/or functionality. Oncolytic poxviruses, such as myxoma virus (MYXV), are promising new instruments in targeting human cancer. MYXV has normal tropism towards European rabbits (Oryctolagus cuniculus) while remaining nonpathogenic for all other vertebrate species tested including humans and mice. Despite this host specificity, we have shown that MYXV is capable of infecting and killing a wide variety of human cancer cell lines. In light of these observations, we investigated whether MYXV could specifically target and eliminate LSPCs from primary AML using an ex vivo purging technique as assessed using both in vitro and in vivo functional analyses. Using a MYXV construct that expresses GFP upon cell infection, we observed GFP+ cells in leukemia exposed to MYXV at a concentration of 10 MOI over a 3-day period. No GFP expression was observed in normal bone marrow (BM) or mock (vehicle only) treated controls. GFP+ AML cells also began to undergo apoptosis shown by positive Annexin V staining. For myxoma to be a viable therapeutic for leukemia, it must not only target primary leukemia but also spare normal hematopoietic stem and progenitor cells (HSPCs). To test normal progenitor cell function following exposure to MYXV, normal BM cells were incubated with and without MYXV and tested for colony forming cell (CFC) content. Following incubation with MYXV, we observed differentiated colonies forming after 14 days indicating that the CFC potential of normal HSPCs was not adversely affected by MYXV. The frequency of the different colonies formed was also similar between mock and MYXV treated groups. When AML cells were mock treated pleomorphic colonies formed consistent with AML-colony forming units (AML-CFUs). Conversely, when exposed to MYXV, AML cells did not form recognizable AML-CFU colonies and instead remained heterodispersed suggesting impairment of progenitor cell function in vitro. To assess functional effects of MYXV on leukemia engraftment, sublethally irradiated NOG mice were transplanted with either mock treated primary AML (n=7) or primary AML pre-treated with MYXV for 3 hours (n=10). After 8 weeks, the percentage of engrafted mice was 100% after mock treated AML transplant but dropped to 10% after MYXV treatment. Significantly lower mean engraftment was observed in the group that received MYXV treated AML in comparison to mock treated samples (4.5% vs. 24% respectively; p < 0.05). Moreover, we show susceptibility of a primary AML specimen harboring an activating internal tandem duplication (ITD) mutation in FLT3, which represents an aggressive malignancy well-known for insensitivity to conventional chemotherapy. In animals showing leukemia engraftment by FACS, PCR was positive for the FLT3 ITD mutation. However, molecular remissions were evident in mice receiving MYXV treated samples. Efficacy against this leukemia signifies opportunity for disease eradication in an otherwise grim clinical setting. Finally, to assess functional effects of MYXV on normal HSPC engraftment, sublethally irradiated NOG mice were transplanted with either mock treated normal BM (n=10) or MYXV treated BM (n=9). After 8 weeks, there was no difference in the numbers of mice that engrafted between mock treated or MYXV treated groups (70% vs. 78% respectively; p = 0.72). There was also no difference in mean levels of engraftment per animal (1% vs. 2%; p = 0.41) suggesting that MYXV does not adversely affect the in vivo engraftment potential of normal HSPCs. In these studies, primary human LSPCs were targeted by MYXV purging, while normal human HSPCs showed no response maintaining both in vitro and in vivo functional potential. Given this demonstrated efficacy and safety, ex vivo purging of autologous hematopoietic grafts with MYXV may be feasible in cancer patients undergoing high dose chemotherapy followed by ABMT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2418-2418
Author(s):  
Anja Köhler ◽  
Vince Schmithorst ◽  
Marie-Dominique Filippi ◽  
Marnie A. Ryan ◽  
Deidre Daria ◽  
...  

Abstract Hematopoiesis, the process in which blood cells are generated from hematopoietic stem and progenitor cells (HSPCs) is primarily confined to the bone cavities. The interactions of hematopoietic cells with stroma cells forming niches inside the bone cavities are central to hematopoiesis, as these regulate cell proliferation, self-renewal and differentiation. Hematopoietic cell/stroma interactions have thus been, in analogy to the immunological synapse, named stem/progenitor cell synapses. So far, visualization of the behavior of somatic stem and progenitor cells in an undisturbed in vivo environment has not been reported for the mammalian system and consequently, the cellular dynamics of stem, progenitor and differentiated cells in vivo are only poorly defined. We developed and performed intravital time-lapse 2-photon microscopy in the marrow of the long bones (tibia) of mice to study the behavior and dynamics of differentiated hematopoietic cells as well as HPCs and HSCs in close vicinity to the endosteum in vivo over time. We demonstrate that HPCs as well as HSCs reside in close vicinity to the endosteum, further supporting the notion of an endosteal stem cell niche, and that they are, in contrast to differentiated macrophages and dendritic cells, solitary and immobile. Both HPCs and HSCs occupy distinct positions relative to the endosteum and show cell protrusion movement consistent with an active stem/progenitor cell synapse. Lastly, we report that aged HSCs show increased protrusion movement and localize more distantly to the endosteum compared to young HSCs. In addition, aged HSCs present with reduced adhesion to stroma as well as reduced polarity upon adhesion in vitro, implying a connection between altered stem cell dynamics in vivo and stem cell aging. The intravital imaging technology developed might establish a basis for further delineating additional important questions in stem cell biology like cellular mechanisms of hematopoietic stem cell self-renewal and differentiation in the context of the stroma/niche in vivo.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Cristina Bono ◽  
Alba Martínez ◽  
Javier Megías ◽  
Daniel Gozalbo ◽  
Alberto Yáñez ◽  
...  

ABSTRACT Toll-like receptor (TLR) agonists drive hematopoietic stem and progenitor cells (HSPCs) to differentiate along the myeloid lineage. In this study, we used an HSPC transplantation model to investigate the possible direct interaction of β-glucan and its receptor (dectin-1) on HSPCs in vivo. Purified HSPCs from bone marrow of B6Ly5.1 mice (CD45.1 alloantigen) were transplanted into dectin-1−/− mice (CD45.2 alloantigen), which were then injected with β-glucan (depleted zymosan). As recipient mouse cells do not recognize the dectin-1 agonist injected, interference by soluble mediators secreted by recipient cells is negligible. Transplanted HSPCs differentiated into macrophages in response to depleted zymosan in the spleens and bone marrow of recipient mice. Functionally, macrophages derived from HSPCs exposed to depleted zymosan in vivo produced higher levels of inflammatory cytokines (tumor necrosis factor alpha [TNF-α] and interleukin 6 [IL-6]). These results demonstrate that trained immune responses, already described for monocytes and macrophages, also take place in HSPCs. Using a similar in vivo model of HSPC transplantation, we demonstrated that inactivated yeasts of Candida albicans induce differentiation of HSPCs through a dectin-1- and MyD88-dependent pathway. Soluble factors produced following exposure of HSPCs to dectin-1 agonists acted in a paracrine manner to induce myeloid differentiation and to influence the function of macrophages derived from dectin-1-unresponsive or β-glucan-unexposed HSPCs. Finally, we demonstrated that an in vitro transient exposure of HSPCs to live C. albicans cells, prior to differentiation, is sufficient to induce a trained phenotype of the macrophages they produce in a dectin-1- and Toll-like receptor 2 (TLR2)-dependent manner. IMPORTANCE Invasive candidiasis is an increasingly frequent cause of serious and often fatal infections. Understanding host defense is essential to design novel therapeutic strategies to boost immune protection against Candida albicans. In this article, we delve into two new concepts that have arisen over the last years: (i) the delivery of myelopoiesis-inducing signals by microbial components directly sensed by hematopoietic stem and progenitor cells (HSPCs) and (ii) the concept of “trained innate immunity” that may also apply to HSPCs. We demonstrate that dectin-1 ligation in vivo activates HSPCs and induces their differentiation to trained macrophages by a cell-autonomous indirect mechanism. This points to new mechanisms by which pathogen detection by HSPCs may modulate hematopoiesis in real time to generate myeloid cells better prepared to deal with the infection. Manipulation of this process may help to boost the innate immune response during candidiasis.


2019 ◽  
Vol 42 (7) ◽  
pp. 374-379 ◽  
Author(s):  
Hirotoshi Miyoshi ◽  
Chiaki Sato ◽  
Yuichiro Shimizu ◽  
Misa Morita

With the aim of establishing an effective method to expand hematopoietic stem/progenitor cells for application in hematopoietic stem cell transplantation, we performed ex vivo expansion of hematopoietic stem/progenitor cells derived from mouse fetal liver cells in three-dimensional cocultures with stromal cells. In these cocultures, stromal cells were first cultured within three-dimensional scaffolds to form stromal layers and then fetal liver cells containing hematopoietic cells were seeded on these scaffolds to expand the hematopoietic cells over the 2 weeks of coculture in a serum-containing medium without the addition of cytokines. Prior to coculture, stromal cell growth was suppressed by treatment with the DNA synthesis inhibitor mitomycin C, and its effect on hematopoietic stem/progenitor cell expansion was compared with that in control cocultures in which fetal liver cells were cocultured with three-dimensional freeze-thawed stromal cells. After coculture with mitomycin C-treated stromal cells, we achieved a several-fold expansion of the primitive hematopoietic cells (c-kit+hematopoietic progenitor cells >7.8-fold, and CD34+hematopoietic stem/progenitor cells >3.5-fold). Compared with control cocultures, expansion of hematopoietic stem/progenitor cells tended to be lower, although that of hematopoietic progenitor cells was comparable. Thus, our results suggest that three-dimensional freeze-thawed stromal cells have higher potential to expand hematopoietic stem/progenitor cells compared with mitomycin C-treated stromal cells.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1317 ◽  
Author(s):  
Alba Martínez ◽  
Cristina Bono ◽  
Daniel Gozalbo ◽  
Helen S. Goodridge ◽  
M. Luisa Gil ◽  
...  

Microbial recognition by pattern recognition receptors (PRRs) expressed on hematopoietic stem and progenitor cells (HSPCs) not only activates myelopoiesis but also programs the function of the monocytes and macrophages they produce. For instance, changes in HSPC programming modify the ability of macrophages derived from them to produce inflammatory cytokines. While HSPCs exposed to a TLR2 agonist give rise to tolerized macrophages (lower proinflammatory cytokine production), HSPCs treated with Dectin-1 ligands produce trained macrophages (higher proinflammatory cytokine production). However, nothing is known about the impact of HSPC exposure to microbes on the function of antigen presenting cells (APCs). In this study we evaluated whether treatment of murine bone marrow HSPCs with a TLR2 or Dectin-1 ligand impacts the antigen presenting capacity of APCs derived from them in vitro. Following activation with microbial ligands or Candida albicans yeasts, APCs derived from TLR2/Dectin-1-programed HSPCs exhibit altered expression of MHCII (signal 1), co-stimulatory molecules (CD40, CD80 and CD86; signal 2) and cytokines (TNF-α, IL-6, IL-12 p40 and IL-2; signal 3). Moreover, APCs derived from TLR2/Dectin-1-programed HSPCs prime enhanced Th1 and Th17 responses, which are important for antifungal defense, in CD4 T cell cocultures. Overall, these results demonstrate for the first time that microbial detection by bone marrow HSPCs can modulate the adaptive immune response by inducing the production of APCs with an altered phenotype.


Sign in / Sign up

Export Citation Format

Share Document