Faculty Opinions recommendation of Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions.

Author(s):  
Friedemann Kiefer
2014 ◽  
Vol 28 (14) ◽  
pp. 1592-1603 ◽  
Author(s):  
W. Zheng ◽  
H. Nurmi ◽  
S. Appak ◽  
A. Sabine ◽  
E. Bovay ◽  
...  

2018 ◽  
Vol 115 (28) ◽  
pp. E6467-E6476 ◽  
Author(s):  
Laura Hakanpaa ◽  
Elina A. Kiss ◽  
Guillaume Jacquemet ◽  
Ilkka Miinalainen ◽  
Martina Lerche ◽  
...  

Loss of endothelial integrity promotes capillary leakage in numerous diseases, including sepsis, but there are no effective therapies for preserving endothelial barrier function. Angiopoietin-2 (ANGPT2) is a context-dependent regulator of vascular leakage that signals via both endothelial TEK receptor tyrosine kinase (TIE2) and integrins. Here, we show that antibodies against β1-integrin decrease LPS-induced vascular leakage in murine endotoxemia, as either a preventative or an intervention therapy. β1-integrin inhibiting antibodies bound to the vascular endothelium in vivo improved the integrity of endothelial cell–cell junctions and protected mice from endotoxemia-associated cardiac failure, without affecting endothelial inflammation, serum proinflammatory cytokine levels, or TIE receptor signaling. Moreover, conditional deletion of a single allele of endothelial β1-integrin protected mice from LPS-induced vascular leakage. In endothelial monolayers, the inflammatory agents thrombin, lipopolysaccharide (LPS), and IL-1β decreased junctional vascular endothelial (VE)-cadherin and induced actin stress fibers via β1- and α5-integrins and ANGPT2. Additionally, β1-integrin inhibiting antibodies prevented inflammation-induced endothelial cell contractility and monolayer permeability. Mechanistically, the inflammatory agents stimulated ANGPT2-dependent translocation of α5β1-integrin into tensin-1–positive fibrillar adhesions, which destabilized the endothelial monolayer. Thus, β1-integrin promotes endothelial barrier disruption during inflammation, and targeting β1-integrin signaling could serve as a novel means of blocking pathological vascular leak.


2012 ◽  
Vol 104 (6) ◽  
pp. 461-475 ◽  
Author(s):  
Tanja Holopainen ◽  
Pipsa Saharinen ◽  
Gabriela D’Amico ◽  
Anita Lampinen ◽  
Lauri Eklund ◽  
...  

Angiogenesis ◽  
2021 ◽  
Author(s):  
Corina Marziano ◽  
Gael Genet ◽  
Karen K. Hirschi

AbstractThere are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.


2005 ◽  
Vol 280 (41) ◽  
pp. 34859-34869 ◽  
Author(s):  
Anders Bratt ◽  
Olivier Birot ◽  
Indranil Sinha ◽  
Niina Veitonmäki ◽  
Karin Aase ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document