cell morphogenesis
Recently Published Documents


TOTAL DOCUMENTS

388
(FIVE YEARS 54)

H-INDEX

62
(FIVE YEARS 5)

Author(s):  
Wenwei Lin ◽  
Wenxin Tang ◽  
Xue Pan ◽  
Aobo Huang ◽  
Xiuqin Gao ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Huan Chen ◽  
Yujie He ◽  
Xiangping Wen ◽  
Shihong Shao ◽  
Yujie Liu ◽  
...  

Transcription factors of the SOX family were first discovered in mammals in 1990. The sex-determining region Y box 9 belongs to the SOX transcription factor family. It plays an important role in inducing tissue and cell morphogenesis, survival, and many developmental processes. Furthermore, it has been shown to be an oncogene in many tumors. Gynecological malignancies are tumors that occur in the female reproductive system and seriously threaten the lives of patients. Common gynecological malignancies include ovarian cancer, cervical cancer, and endometrial cancer. So far, the molecular mechanisms related to the incidence and development of gynecological malignancies remain unclear. This makes it particularly important to discover their common causative molecule and thus provide an effective therapeutic target. In recent years, studies have found that multiple mechanisms are involved in regulating the expression of the sex-determining region Y box 9, leading to the occurrence and development of gynecological malignancies. In this review, we discuss the prognostic value of SOX9 expression and the potential of targeting SOX9 for gynecological malignancy treatment. We also discuss progress regarding the role of SOX9 in gynecological malignancy pathogenesis through its mediation of important mechanisms, including tumor initiation and proliferation, apoptosis, migration, invasion, chemoresistance, and stem cell maintenance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dengying Qiu ◽  
Shouling Xu ◽  
Yi Wang ◽  
Ming Zhou ◽  
Lilan Hong

Plant morphogenesis involves multiple biochemical and physical processes inside the cell wall. With the continuous progress in biomechanics field, extensive studies have elucidated that mechanical forces may be the most direct physical signals that control the morphology of cells and organs. The extensibility of the cell wall is the main restrictive parameter of cell expansion. The control of cell wall mechanical properties largely determines plant cell morphogenesis. Here, we summarize how cell wall modifying proteins modulate the mechanical properties of cell walls and consequently influence plant morphogenesis.


2021 ◽  
Vol 9 (11) ◽  
pp. 2234
Author(s):  
Marina Schock ◽  
Steffen Schmidt ◽  
Klaus Ersfeld

Trypanosome brucei, the causative agent of African sleeping sickness, harbours a highly ordered, subpellicular microtubule cytoskeleton that defines many aspects of morphology, motility and virulence. This array of microtubules is associated with a large number of proteins involved in its regulation. Employing proximity-dependent biotinylation assay (BioID) using the well characterised cytoskeleton-associated protein CAP5.5 as a probe, we identified CAP50 (Tb927.11.2610). This protein colocalises with the subpellicular cytoskeleton microtubules but not with the flagellum. Depletion by RNAi results in defects in cytokinesis, morphology and partial disorganisation of microtubule arrays. Published proteomics data indicate a possible association of CAP50 with two other, yet uncharacterised, cytoskeletal proteins, CAP52 (Tb927.6.5070) and CAP42 (Tb927.4.1300), which were therefore included in our analysis. We show that their depletion causes phenotypes similar to those described for CAP50 and that they are essential for cellular integrity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kotomi Kikukawa ◽  
Kazuki Yoshimura ◽  
Akira Watanabe ◽  
Takumi Higaki

During cotyledon growth, the pavement cells, which make up most of the epidermal layer, undergo dynamic morphological changes from simple to jigsaw puzzle-like shapes in most dicotyledonous plants. Morphological analysis of cell shapes generally involves the segmentation of cells from input images followed by the extraction of shape descriptors that can be used to assess cell shape. Traditionally, replica and fluorescent labeling methods have been used for time-lapse observation of cotyledon epidermal cell morphogenesis, but these methods require expensive microscopes and can be technically demanding. Here, we propose a silver-nano-ink coating method for time-lapse imaging and quantification of morphological changes in the epidermal cells of growing Arabidopsis thaliana cotyledons. To obtain high-resolution and wide-area cotyledon surface images, we placed the seedlings on a biaxial goniometer and adjusted the cotyledons, which were coated by dropping silver ink onto them, to be as horizontal to the focal plane as possible. The omnifocal images that had the most epidermal cell shapes in the observation area were taken at multiple points to cover the whole surface area of the cotyledon. The multi-point omnifocal images were automatically stitched, and the epidermal cells were automatically and accurately segmented by machine learning. Quantification of cell morphological features based on the segmented images demonstrated that the proposed method could quantitatively evaluate jigsaw puzzle-shaped cell growth and morphogenesis. The method was successfully applied to phenotyping of the bpp125 triple mutant, which has defective pavement cell morphogenesis. The proposed method will be useful for time-lapse non-destructive phenotyping of plant surface structures and is easier to use than the conversional methods that require fluorescent dye labeling or transformation with marker gene constructs and expensive microscopes such as the confocal laser microscope.


Sign in / Sign up

Export Citation Format

Share Document