scholarly journals Faculty Opinions recommendation of Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells.

Author(s):  
John YL Chiang
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohamed-Sami Trabelsi ◽  
Mehdi Daoudi ◽  
Janne Prawitt ◽  
Sarah Ducastel ◽  
Véronique Touche ◽  
...  

2019 ◽  
Vol 316 (5) ◽  
pp. G574-G584 ◽  
Author(s):  
Charlotte Bayer Christiansen ◽  
Samuel Addison Jack Trammell ◽  
Nicolai Jacob Wewer Albrechtsen ◽  
Kristina Schoonjans ◽  
Reidar Albrechtsen ◽  
...  

A large number of glucagon-like-peptide-1 (GLP-1)- and peptide-YY (PYY)-producing L cells are located in the colon, but little is known about their contribution to whole body metabolism. Since bile acids (BAs) increase GLP-1 and PYY release, and since BAs spill over from the ileum to the colon, we decided to investigate the ability of BAs to stimulate colonic GLP-1 and PYY secretion. Using isolated perfused rat/mouse colon as well as stimulation of the rat colon in vivo, we demonstrate that BAs significantly enhance secretion of GLP-1 and PYY from the colon with average increases of 3.5- and 2.9-fold, respectively. Furthermore, we find that responses depend on BA absorption followed by basolateral activation of the BA-receptor Takeda-G protein-coupled-receptor 5. Surprisingly, the apical sodium-dependent BA transporter, which serves to absorb conjugated BAs, was not required for colonic conjugated BA absorption or conjugated BA-induced peptide secretion. In conclusion, we demonstrate that BAs represent a major physiological stimulus for colonic L-cell secretion.NEW & NOTEWORTHY By the use of isolated perfused rodent colon preparations we show that bile acids are potent and direct promoters of colonic glucagon-like-peptide 1 and peptide-YY secretion. The study provides convincing evidence that basolateral Takeda-G protein-coupled-receptor 5 activation is mediating the effects of bile acids in the colon and thus add to the existing literature described for L cells in the ileum.


2011 ◽  
Vol 34 (5) ◽  
pp. 671-676 ◽  
Author(s):  
Yoshiro Kitahara ◽  
Kyoko Miura ◽  
Reiko Yasuda ◽  
Haruka Kawanabe ◽  
Shimpei Ogawa ◽  
...  

2010 ◽  
Vol 138 (5) ◽  
pp. S-403-S-404 ◽  
Author(s):  
Alexander D. Kazberouk ◽  
Francesco Giovinazzo ◽  
Andrew Timberlake ◽  
Betty De Smet ◽  
Roswitha Pfragner ◽  
...  

2009 ◽  
Vol 297 (4) ◽  
pp. G663-G671 ◽  
Author(s):  
Tohru Hira ◽  
Taisuke Mochida ◽  
Kyoko Miyashita ◽  
Hiroshi Hara

Glucagon-like peptide-1 (GLP-1) is released from enteroendocrine cells (L cells) in response to food ingestion. The mechanism by which dietary peptides stimulate GLP-1 secretion in the gut is unknown. In the present study, we found that a hydrolysate prepared from zein, a major corn protein [zein hydrolysate (ZeinH)], strongly stimulates GLP-1 secretion in enteroendocrine GLUTag cells. Stimulatory mechanisms of GLP-1 secretion induced by ZeinH were investigated in the rat small intestine under anesthesia. Blood was collected through a portal catheter before and after ZeinH administration into different sites of the small intestine. The duodenal, jejunal, and ileal administration of ZeinH induced dose-dependent increases in portal GLP-1 concentration. GLP-1 secretion in response to the ileal administration of ZeinH was higher than that in the duodenal or jejunal administration. Capsaicin treatment on esophageal vagal trunks abolished the GLP-1 secretion induced by duodenal ZeinH but did not affect the secretion induced by jejunal or ileal ZeinH. These results suggest that ZeinH in the jejunum or ileum directly stimulates GLP-1 secretion but duodenal ZeinH indirectly stimulates GLP-1 secretion via the vagal afferent nerve. A direct blood sampling method from the duodenal vein and ileal mesenteric vein revealed that ZeinH administered into the ligated duodenal loop enhanced GLP-1 concentration in the ileal mesenteric vein but not in the duodenal vein. This confirmed that ZeinH in the duodenum induces GLP-1 secretion from L cells located in the ileum by an indirect mechanism. These results indicate that a potent GLP-1-releasing peptide, ZeinH, induces GLP-1 secretion by direct and indirect mechanisms in the rat intestine.


2017 ◽  
Vol 292 (26) ◽  
pp. 10855-10864 ◽  
Author(s):  
Kazuki Harada ◽  
Tetsuya Kitaguchi ◽  
Taichi Kamiya ◽  
Kyaw Htet Aung ◽  
Kazuaki Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document