Faculty Opinions recommendation of The Basal Forebrain and Motor Cortex Provide Convergent yet Distinct Movement-Related Inputs to the Auditory Cortex.

Author(s):  
Andrew King
2001 ◽  
Vol 86 (1) ◽  
pp. 326-338 ◽  
Author(s):  
Michael P. Kilgard ◽  
Pritesh K. Pandya ◽  
Jessica Vazquez ◽  
Anil Gehi ◽  
Christoph E. Schreiner ◽  
...  

The cortical representation of the sensory environment is continuously modified by experience. Changes in spatial (receptive field) and temporal response properties of cortical neurons underlie many forms of natural learning. The scale and direction of these changes appear to be determined by specific features of the behavioral tasks that evoke cortical plasticity. The neural mechanisms responsible for this differential plasticity remain unclear partly because important sensory and cognitive parameters differ among these tasks. In this report, we demonstrate that differential sensory experience directs differential plasticity using a single paradigm that eliminates the task-specific variables that have confounded direct comparison of previous studies. Electrical activation of the basal forebrain (BF) was used to gate cortical plasticity mechanisms. The auditory stimulus paired with BF stimulation was systematically varied to determine how several basic features of the sensory input direct plasticity in primary auditory cortex (A1) of adult rats. The distributed cortical response was reconstructed from a dense sampling of A1 neurons after 4 wk of BF-sound pairing. We have previously used this method to show that when a tone is paired with BF activation, the region of the cortical map responding to that tone frequency is specifically expanded. In this report, we demonstrate that receptive-field size is determined by features of the stimulus paired with BF activation. Specifically, receptive fields were narrowed or broadened as a systematic function of both carrier-frequency variability and the temporal modulation rate of paired acoustic stimuli. For example, the mean bandwidth of A1 neurons was increased (+60%) after pairing BF stimulation with a rapid train of tones and decreased (−25%) after pairing unmodulated tones of different frequencies. These effects are consistent with previous reports of receptive-field plasticity evoked by natural learning. The maximum cortical following rate and minimum response latency were also modified as a function of stimulus modulation rate and carrier-frequency variability. The cortical response to a rapid train of tones was nearly doubled if BF stimulation was paired with rapid trains of random carrier frequency, while no following rate plasticity was observed if a single carrier frequency was used. Finally, we observed significant increases in response strength and total area of functionally defined A1 following BF activation paired with certain classes of stimuli and not others. These results indicate that the degree and direction of cortical plasticity of temporal and receptive-field selectivity are specified by the structure and schedule of inputs that co-occur with basal forebrain activation and suggest that the rules of cortical plasticity do not operate on each elemental stimulus feature independently of others.


Neuron ◽  
2005 ◽  
Vol 48 (4) ◽  
pp. 675-686 ◽  
Author(s):  
Marc R. Kamke ◽  
Mel Brown ◽  
Dexter R.F. Irvine

2020 ◽  
Author(s):  
Soheila Samiee ◽  
Dominique Vuvan ◽  
Esther Florin ◽  
Philippe Albouy ◽  
Isabelle Peretz ◽  
...  

AbstractThe detection of pitch changes is crucial to sound localization, music appreciation and speech comprehension, yet the brain network oscillatory dynamics involved remain unclear. We used time-resolved cortical imaging in a pitch change detection task. Tone sequences were presented to both typical listeners and participants affected with congenital amusia, as a model of altered pitch change perception.Our data show that tone sequences entrained slow (2-4 Hz) oscillations in the auditory cortex and inferior frontal gyrus, at the pace of tone presentations. Inter-regional signaling at this slow pace was directed from auditory cortex towards the inferior frontal gyrus and motor cortex. Bursts of faster (15-35Hz) oscillations were also generated in these regions, with directed influence from the motor cortex. These faster components occurred precisely at the expected latencies of each tone in a sequence, yielding a form of local phase-amplitude coupling with slower concurrent activity. The intensity of this coupling peaked dynamically at the moment of anticipated pitch changes.We clarify the mechanistic relevance of these observations in relation to behavior as, by task design, typical listeners outperformed amusic participants. Compared to typical listeners, inter-regional slow signaling toward motor and inferior frontal cortices was depressed in amusia. Also, the auditory cortex of amusic participants over-expressed tonic, fast-slow phase-amplitude coupling, pointing at a possible misalignment between stimulus encoding and internal predictive signaling. Our study provides novel insight into the functional architecture of polyrhythmic brain activity in auditory perception and emphasizes active, network processes involving the motor system in sensory integration.


Neuroscience ◽  
1993 ◽  
Vol 56 (1) ◽  
pp. 61-74 ◽  
Author(s):  
B. Hars ◽  
C. Maho ◽  
J.-M. Edeline ◽  
E. Hennevin

2007 ◽  
Vol 39 (4-5) ◽  
pp. 355-357 ◽  
Author(s):  
O. V. Vlasenko ◽  
A. V. Dovgan’ ◽  
V. A. Maisky ◽  
A. V. Maznychenko ◽  
A. I. Pilyavskii

Sign in / Sign up

Export Citation Format

Share Document