Origin and immunolesioning of cholinergic basal forebrain innervation of cat primary auditory cortex

2005 ◽  
Vol 206 (1-2) ◽  
pp. 89-106 ◽  
Author(s):  
Marc R. Kamke ◽  
Mel Brown ◽  
Dexter R.F. Irvine
2001 ◽  
Vol 86 (1) ◽  
pp. 326-338 ◽  
Author(s):  
Michael P. Kilgard ◽  
Pritesh K. Pandya ◽  
Jessica Vazquez ◽  
Anil Gehi ◽  
Christoph E. Schreiner ◽  
...  

The cortical representation of the sensory environment is continuously modified by experience. Changes in spatial (receptive field) and temporal response properties of cortical neurons underlie many forms of natural learning. The scale and direction of these changes appear to be determined by specific features of the behavioral tasks that evoke cortical plasticity. The neural mechanisms responsible for this differential plasticity remain unclear partly because important sensory and cognitive parameters differ among these tasks. In this report, we demonstrate that differential sensory experience directs differential plasticity using a single paradigm that eliminates the task-specific variables that have confounded direct comparison of previous studies. Electrical activation of the basal forebrain (BF) was used to gate cortical plasticity mechanisms. The auditory stimulus paired with BF stimulation was systematically varied to determine how several basic features of the sensory input direct plasticity in primary auditory cortex (A1) of adult rats. The distributed cortical response was reconstructed from a dense sampling of A1 neurons after 4 wk of BF-sound pairing. We have previously used this method to show that when a tone is paired with BF activation, the region of the cortical map responding to that tone frequency is specifically expanded. In this report, we demonstrate that receptive-field size is determined by features of the stimulus paired with BF activation. Specifically, receptive fields were narrowed or broadened as a systematic function of both carrier-frequency variability and the temporal modulation rate of paired acoustic stimuli. For example, the mean bandwidth of A1 neurons was increased (+60%) after pairing BF stimulation with a rapid train of tones and decreased (−25%) after pairing unmodulated tones of different frequencies. These effects are consistent with previous reports of receptive-field plasticity evoked by natural learning. The maximum cortical following rate and minimum response latency were also modified as a function of stimulus modulation rate and carrier-frequency variability. The cortical response to a rapid train of tones was nearly doubled if BF stimulation was paired with rapid trains of random carrier frequency, while no following rate plasticity was observed if a single carrier frequency was used. Finally, we observed significant increases in response strength and total area of functionally defined A1 following BF activation paired with certain classes of stimuli and not others. These results indicate that the degree and direction of cortical plasticity of temporal and receptive-field selectivity are specified by the structure and schedule of inputs that co-occur with basal forebrain activation and suggest that the rules of cortical plasticity do not operate on each elemental stimulus feature independently of others.


2020 ◽  
Vol 30 (8) ◽  
pp. 4481-4495
Author(s):  
H Azimi ◽  
A-L Klaassen ◽  
K Thomas ◽  
M A Harvey ◽  
G Rainer

Abstract Many studies have implicated the basal forebrain (BF) as a potent regulator of sensory encoding even at the earliest stages of or cortical processing. The source of this regulation involves the well-documented corticopetal cholinergic projections from BF to primary cortical areas. However, the BF also projects to subcortical structures, including the thalamic reticular nucleus (TRN), which has abundant reciprocal connections with sensory thalamus. Here we present naturalistic auditory stimuli to the anesthetized rat while making simultaneous single-unit recordings from the ventral medial geniculate nucleus (MGN) and primary auditory cortex (A1) during electrical stimulation of the BF. Like primary visual cortex, we find that BF stimulation increases the trial-to-trial reliability of A1 neurons, and we relate these results to change in the response properties of MGN neurons. We discuss several lines of evidence that implicate the BF to thalamus pathway in the manifestation of BF-induced changes to cortical sensory processing and support our conclusions with supplementary TRN recordings, as well as studies in awake animals showing a strong relationship between endogenous BF activity and A1 reliability. Our findings suggest that the BF subcortical projections that modulate MGN play an important role in auditory processing.


2014 ◽  
Vol 40 (6) ◽  
pp. 2922-2940 ◽  
Author(s):  
Victoria M. Bajo ◽  
Nicholas D. Leach ◽  
Patricia M. Cordery ◽  
Fernando R. Nodal ◽  
Andrew J. King

2013 ◽  
Vol 40 (4) ◽  
pp. 365
Author(s):  
Qiao-Zhen QI ◽  
Wen-Juan SI ◽  
Feng LUO ◽  
Xin WANG

Author(s):  
Vidhusha Srinivasan ◽  
N. Udayakumar ◽  
Kavitha Anandan

Background: The spectrum of autism encompasses High Functioning Autism (HFA) and Low Functioning Autism (LFA). Brain mapping studies have revealed that autism individuals have overlaps in brain behavioural characteristics. Generally, high functioning individuals are known to exhibit higher intelligence and better language processing abilities. However, specific mechanisms associated with their functional capabilities are still under research. Objective: This work addresses the overlapping phenomenon present in autism spectrum through functional connectivity patterns along with brain connectivity parameters and distinguishes the classes using deep belief networks. Methods: The task-based functional Magnetic Resonance Images (fMRI) of both high and low functioning autistic groups were acquired from ABIDE database, for 58 low functioning against 43 high functioning individuals while they were involved in a defined language processing task. The language processing regions of the brain, along with Default Mode Network (DMN) have been considered for the analysis. The functional connectivity maps have been plotted through graph theory procedures. Brain connectivity parameters such as Granger Causality (GC) and Phase Slope Index (PSI) have been calculated for the individual groups. These parameters have been fed to Deep Belief Networks (DBN) to classify the subjects under consideration as either LFA or HFA. Results: Results showed increased functional connectivity in high functioning subjects. It was found that the additional interaction of the Primary Auditory Cortex lying in the temporal lobe, with other regions of interest complimented their enhanced connectivity. Results were validated using DBN measuring the classification accuracy of 85.85% for high functioning and 81.71% for the low functioning group. Conclusion: Since it is known that autism involves enhanced, but imbalanced components of intelligence, the reason behind the supremacy of high functioning group in language processing and region responsible for enhanced connectivity has been recognized. Therefore, this work that suggests the effect of Primary Auditory Cortex in characterizing the dominance of language processing in high functioning young adults seems to be highly significant in discriminating different groups in autism spectrum.


Sign in / Sign up

Export Citation Format

Share Document