Faculty Opinions recommendation of Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis.

Author(s):  
Judy Callis
2016 ◽  
Vol 113 (39) ◽  
pp. 11022-11027 ◽  
Author(s):  
Nathan Mellor ◽  
Leah R. Band ◽  
Aleš Pěnčík ◽  
Ondřej Novák ◽  
Afaf Rashed ◽  
...  

The hormone auxin is a key regulator of plant growth and development, and great progress has been made understanding auxin transport and signaling. Here, we show that auxin metabolism and homeostasis are also regulated in a complex manner. The principal auxin degradation pathways in Arabidopsis include oxidation by Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1/2 (AtDAO1/2) and conjugation by Gretchen Hagen3s (GH3s). Metabolic profiling of dao1-1 root tissues revealed a 50% decrease in the oxidation product 2-oxoindole-3-acetic acid (oxIAA) and increases in the conjugated forms indole-3-acetic acid aspartic acid (IAA-Asp) and indole-3-acetic acid glutamic acid (IAA-Glu) of 438- and 240-fold, respectively, whereas auxin remains close to the WT. By fitting parameter values to a mathematical model of these metabolic pathways, we show that, in addition to reduced oxidation, both auxin biosynthesis and conjugation are increased in dao1-1. Transcripts of AtDAO1 and GH3 genes increase in response to auxin over different timescales and concentration ranges. Including this regulation of AtDAO1 and GH3 in an extended model reveals that auxin oxidation is more important for auxin homoeostasis at lower hormone concentrations, whereas auxin conjugation is most significant at high auxin levels. Finally, embedding our homeostasis model in a multicellular simulation to assess the spatial effect of the dao1-1 mutant shows that auxin increases in outer root tissues in agreement with the dao1-1 mutant root hair phenotype. We conclude that auxin homeostasis is dependent on AtDAO1, acting in concert with GH3, to maintain auxin at optimal levels for plant growth and development.


2021 ◽  
Author(s):  
Kosuke Fukui ◽  
Kazushi Arai ◽  
Yuka Tanaka ◽  
Yuki Aoi ◽  
Vandna Kukshal ◽  
...  

The phytohormone auxin, specifically indole-3-acetic acid (IAA) plays a prominent role in plant development. Cellular auxin concentration is coordinately regulated by auxin synthesis, transport, and inactivation to maintain auxin homeostasis; however, the physiological contribution of auxin inactivation to auxin homeostasis has remained elusive. The GH3 genes encode auxin amino acid conjugating enzymes that perform a central role in auxin inactivation. The chemical inhibition of GH3s in planta is challenging because the inhibition of GH3 enzymes leads to IAA overaccumulation that rapidly induces GH3 expression. Here, we developed a potent GH3 inhibitor, designated as kakeimide (KKI), that selectively targets auxin-conjugating GH3s. Chemical knockdown of the auxin inactivation pathway demonstrates that auxin turnover is very rapid (about 10 min), indicating auxin biosynthesis and inactivation dynamically regulate auxin homeostasis.


2012 ◽  
Vol 34 (3) ◽  
pp. 296-306
Author(s):  
Kai-Fa WEI ◽  
Juan CHEN ◽  
Yan-Feng CHEN ◽  
Ling-Juan WU ◽  
Wen-Suo JIA

Sign in / Sign up

Export Citation Format

Share Document