chemical inhibition
Recently Published Documents


TOTAL DOCUMENTS

410
(FIVE YEARS 133)

H-INDEX

43
(FIVE YEARS 5)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
R Christopher D Furniss ◽  
Nikol Kaderabkova ◽  
Declan Barker ◽  
Patricia Bernal ◽  
Evgenia Maslova ◽  
...  

Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
R Christopher D Furniss ◽  
Nikol Kaderabkova ◽  
Declan Barker ◽  
Patricia Bernal ◽  
Evgenia Maslova ◽  
...  

Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers.


Author(s):  
Bingluo Zhou ◽  
Yiran Zhu ◽  
Wenxia Xu ◽  
Qiyin Zhou ◽  
Linghui Tan ◽  
...  

Hypoxia is an important characteristic of the tumor microenvironment. Tumor cells can survive and propagate under the hypoxia stress by activating a series of adaption response. Herein, we found that lysine-specific demethylase 5B (KDM5B) was upregulated in gastric cancer (GC) under hypoxia conditions. The genetic knockdown or chemical inhibition of KDM5B impaired the growth of GC cell adapted to hypoxia. Interestingly, the upregulation of KDM5B in hypoxia response was associated with the SUMOylation of KDM5B. SUMOylation stabilized KDM5B protein by reducing the competitive modification of ubiquitination. Furthermore, the protein inhibitor of activated STAT 4 (PIAS4) was determined as the SUMO E3 ligase, showing increased interaction with KDM5B under hypoxia conditions. The inhibition of KDM5B caused significant downregulation of hypoxia-inducible factor-1α (HIF-1α) protein and target genes under hypoxia. As a result, co-targeting KDM5B significantly improved the antitumor efficacy of antiangiogenic therapy in vivo. Taken together, PIAS4-mediated SUMOylation stabilized KDM5B protein by disturbing ubiquitination-dependent proteasomal degradation to overcome hypoxia stress. Targeting SUMOylation-dependent KDM5B upregulation might be considered when the antiangiogenic therapy was applied in cancer treatment.


2021 ◽  
Author(s):  
Melanie C. Ridgway ◽  
Daniela Cihalova ◽  
Simon H.J. Brown ◽  
Phuong Tran ◽  
Todd W. Mitchell ◽  
...  

Male and female Plasmodium falciparum gametocytes are the parasite lifecycle stage responsible for transmission of malaria from the human host to mosquito vector. Not only are gametocytes able to survive in radically different host environments, but they are also precursors for male and female gametes that reproduce sexually soon after ingestion by the mosquito. Here we investigate the sex-specific lipid metabolism of gametocytes within their host red blood cell. Comparison of the male and female lipidome identifies cholesteryl esters and dihydrosphingomyelin enrichment in female gametocytes. Chemical inhibition of each of these lipid types in mature gametocytes suggests dihydrosphingomyelin synthesis but not cholesteryl ester synthesis is important for gametocyte viability. Genetic disruption of each of the two sphingomyelin synthase gene points towards sphingomyelin synthesis contributing to gametocytogenesis. This study shows that gametocytes are distinct from asexual stages, and that the lipid composition is also vastly different between male and female gametocytes, reflecting the different cellular roles these stages play. Together our results highlight the sex-specific nature of gametocyte lipid metabolism that has the potential to be targeted to block malaria transmission.


2021 ◽  
Author(s):  
Maja Brus-Szkalej ◽  
Christian B. Andersen ◽  
Ramesh R. Vetukuri ◽  
Laura J. Grenville-Briggs Didymus

Transglutaminases (TGases) are enzymes highly conserved among prokaryotic and eukaryotic organisms, where their role is to catalyse protein cross-linking. One of the putative TGases of Phytophthora infestans has previously been shown to be localised to the cell wall. Based on sequence similarity we were able to identify six more genes annotated as putative TGases and show that these seven genes group together in phylogenetic analysis. All of the seven proteins are predicted to contain transmembrane helices and both a TGase domain and a MANSC domain, the latter of which was previously shown to play a role in protein stability. Chemical inhibition of transglutaminase activity and silencing of the entire family of the putative cell wall TGases are both lethal to P. infestans indicating the importance of these proteins in cell wall formation and stability. The intermediate phenotype obtained with lower drug concentrations and less efficient silencing displays a number of deformations to germ tubes and appressoria. Both chemically treated and silenced lines show lower pathogenicity than the wild type in leaf infection assays. Finally, we show that appressoria of P. infestans possess the ability to build up turgor pressure and that this ability is decreased by chemical inhibition of TGases.


2021 ◽  
Author(s):  
Rémi Planés ◽  
Jean-Baptiste BERT ◽  
Sofiane TAIRI ◽  
Lbachir BENMOHAMED ◽  
Elmostafa BAHRAOUI

In this study, we present a molecular characterization of the interaction between the SARS-CoV-2 envelope protein E with TLR2. We demonstrated that E protein interacts physically with TLR2 receptor in a specific and dose-dependent manner. Furthermore, we showed that this interaction is able to engage TLR2 pathway as demonstrated by its capacity to activate NF-κB transcription factor and to stimulate the production of CXCL8 inflammatory chemokine in a TLR2-dependent manner. Furthermore, in agreement with the importance of NF-κB in TLR signaling pathway, we showed that the chemical inhibition of this transcription factor led to significant inhibition of CXCL8 production, while blockade of P38 and ERK1/2 MAP kinases resulted only in a partial CXCL8 inhibition. Overall, our findings suggest considering the envelope protein E as a novel target for COVID-19 interventions: (i) either by exploring the therapeutic effect of anti-E blocking/neutralizing antibodies in symptomatic COVID-19 patients, or (ii) as a promising non-Spike SARS-CoV-2 antigen candidate to include in the development of next generation prophylactic vaccines against COVID-19 infection and disease.


2021 ◽  
Author(s):  
Melanie C. Ridgway ◽  
Daniela Cihalova ◽  
Simon H. J. Brown ◽  
Phuong Tran ◽  
Todd W. Mitchell ◽  
...  

Male and female Plasmodium falciparum gametocytes are the parasite lifecycle stage responsible for transmission of malaria from the human host to mosquito vector. Not only are gametocytes able to survive in radically different host environments, but they are also precursors for male and female gametes that reproduce sexually soon after ingestion by the mosquito. Here we investigate the sex-specific lipid metabolism of gametocytes within their host red blood cell and poised for ingestion by the mosquito vector and subsequent sexual reproduction. Comparison of the male and female lipidome identifies cholesteryl esters and dihydrosphingomyelin enrichment in female gametocytes. Chemical inhibition of each of these lipid types in mature gametocytes suggests dihydrosphingomyelin synthesis but not cholesteryl ester synthesis is important for sex-specific gametocyte viability. Genetic disruption of each of the two sphingomyelin synthase gene points towards sphingomyelin synthesis contributing to gametocytogenesis. This study shows that gametocytes are not only distinct from asexual stages, but that the lipid composition is also vastly different between male and female gametocytes, reflecting the different cellular roles these stages play. Together our results highlight the sex-specific nature of gametocyte lipid metabolism that has the potential to be targeted to block malaria transmission.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Béryl Laplace-Builhé ◽  
Audrey Barthelaix ◽  
Said Assou ◽  
Candice Bohaud ◽  
Marine Pratlong ◽  
...  

AbstractFish species, such as zebrafish (Danio rerio), can regenerate their appendages after amputation through the formation of a heterogeneous cellular structure named blastema. Here, by combining live imaging of triple transgenic zebrafish embryos and single-cell RNA sequencing we established a detailed cell atlas of the regenerating caudal fin in zebrafish larvae. We confirmed the presence of macrophage subsets that govern zebrafish fin regeneration, and identified a foxd3-positive cell population within the regenerating fin. Genetic depletion of these foxd3-positive neural crest-derived cells (NCdC) showed that they are involved in blastema formation and caudal fin regeneration. Finally, chemical inhibition and transcriptomic analysis demonstrated that these foxd3-positive cells regulate macrophage recruitment and polarization through the NRG1/ErbB pathway. Here, we show the diversity of the cells required for blastema formation, identify a discrete foxd3-positive NCdC population, and reveal the critical function of the NRG1/ErbB pathway in controlling the dialogue between macrophages and NCdC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Manish Kumar ◽  
David Molkentine ◽  
Jessica Molkentine ◽  
Kathleen Bridges ◽  
Tongxin Xie ◽  
...  

AbstractDespite radiation forming the curative backbone of over 50% of malignancies, there are no genomically-driven radiosensitizers for clinical use. Herein we perform in vivo shRNA screening to identify targets generally associated with radiation response as well as those exhibiting a genomic dependency. This identifies the histone acetyltransferases CREBBP/EP300 as a target for radiosensitization in combination with radiation in cognate mutant tumors. Further in vitro and in vivo studies confirm this phenomenon to be due to repression of homologous recombination following DNA damage and reproducible using chemical inhibition of histone acetyltransferase (HAT), but not bromodomain function. Selected mutations in CREBBP lead to a hyperacetylated state that increases CBP and BRCA1 acetylation, representing a gain of function targeted by HAT inhibition. Additionally, mutations in CREBBP/EP300 are associated with recurrence following radiation in squamous cell carcinoma cohorts. These findings provide both a mechanism of resistance and the potential for genomically-driven treatment.


Sign in / Sign up

Export Citation Format

Share Document