ubiquitin conjugating enzymes
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 33)

H-INDEX

50
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Kaeli A Welsh ◽  
Derek L Bolhuis ◽  
Anneroos E Nederstigt ◽  
Joshua Boyer ◽  
Brenda R S Temple ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2418
Author(s):  
Ling Cao ◽  
Sheng Wang ◽  
Lihua Zhao ◽  
Yuan Qin ◽  
Hong Wang ◽  
...  

Protein ubiquitination is important for the regulation of meiosis in eukaryotes, including plants. However, little is known about the involvement of E2 ubiquitin-conjugating enzymes in plant meiosis. Arabidopsis UBC22 is a unique E2 enzyme, able to catalyze the formation of ubiquitin dimers through lysine 11 (K11). Previous work has shown that ubc22 mutants are defective in megasporogenesis, with most ovules having no or abnormally functioning megaspores; furthermore, some mutant plants show distinct phenotypes in vegetative growth. In this study, we showed that chromosome segregation and callose deposition were abnormal in mutant female meiosis while male meiosis was not affected. The meiotic recombinase DMC1, required for homologous chromosome recombination, showed a dispersed distribution in mutant female meiocytes compared to the presence of strong foci in WT female meiocytes. Based on an analysis of F1 plants produced from crosses using a mutant as the female parent, about 24% of female mutant gametes had an abnormal content of DNA, resulting in frequent aneuploids among the mutant plants. These results show that UBC22 is critical for normal chromosome segregation in female meiosis but not for male meiosis, and they provide important leads for studying the role of UBC22 and K11-linked ubiquitination.


2021 ◽  
Author(s):  
Prakash K. Shukla ◽  
Dhiraj Sinha ◽  
Andrew M. Leng ◽  
Jesse E. Bissell ◽  
Shravya Thatipamula ◽  
...  

AbstractRad6, an E2 ubiquitin-conjugating enzyme conserved from yeast to humans, functions in transcription, genome maintenance and proteostasis. The contributions of many conserved secondary structures of Rad6 and its human homologs UBE2A and UBE2B to their biological functions are not understood. A mutant RAD6 allele with a missense substitution at alanine-126 (A126) of α-helix-3 that causes defects in telomeric gene silencing, DNA repair and protein degradation was reported over two decades ago. Here, using a combination of genetics, biochemical, biophysical, and computational approaches, we discovered that α-helix-3 A126 mutations compromise the ability of Rad6 to ubiquitinate target proteins without disrupting interactions with partner E3 ubiquitin-ligases that are required for their various biological functions in vivo. Explaining the defective in vitro or in vivo ubiquitination activities, molecular dynamics simulations and NMR showed that α-helix-3 A126 mutations cause local disorder of the catalytic pocket of Rad6, and also disorganize the global structure of the protein to decrease its stability in vivo. We further demonstrate that α-helix-3 A126 mutations deform the structures of UBE2A and UBE2B, the human Rad6 homologs, and compromise the in vitro ubiquitination activity and folding of UBE2B. Molecular dynamics simulations and circular dichroism spectroscopy along with functional studies further revealed that cancer-associated mutations in α-helix-3 of UBE2A or UBE2B alter both structure and activity, providing an explanation for their pathogenicity. Overall, our studies reveal that the conserved α-helix-3 is a crucial structural constituent that controls the organization of catalytic pockets and biological functions of the Rad6-family E2 ubiquitin-conjugating enzymes.HighlightsContributions of the conserved α-helix-3 to the functions of E2 enzymes is not known.Mutations in alanine-126 of α-helix-3 impair in vitro enzymatic activity and in vivo biological functions of Rad6.Mutations in alanine-126 of α-helix-3 disorganize local or global protein structure, compromise folding or stability, and impair the catalytic activities of yeast Rad6 and its human homologs UBE2A and UBE2B.Cancer-associated mutations in α-helix-3 of human UBE2A or UBE2B alter protein flexibility, structure, and activity.α-helix-3 is a key structural component of yeast and human Rad6 E2 ubiquitin-conjugating enzymes.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Elena Faccenda ◽  
Robert Layfield

Ubiquitination (a.k.a. ubiquitylation) is a protein post-translational modification that typically requires the sequential action of three enzymes: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3 (ubiquitin ligases) [19]. Ubiquitination of proteins can target them for proteasomal degradation, or modulate cellular processes including cell cycle progression, transcriptional regulation, DNA repair and signal transduction. E3 ubiquitin ligases, of which there are >600 in humans, are a family of highly heterogeneous proteins and protein complexes that recruit ubiquitin-loaded E2 enzymes to mediate transfer of the ubiquitin molecule from the E2 to protein substrates. Target substrate specificity is determined by a substrate recognition subunit within the E3 complex.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1974
Author(s):  
Dulce Peris-Moreno ◽  
Mélodie Malige ◽  
Agnès Claustre ◽  
Andrea Armani ◽  
Cécile Coudy-Gandilhon ◽  
...  

The ubiquitin proteasome system (UPS) is the main player of skeletal muscle wasting, a common characteristic of many diseases (cancer, etc.) that negatively impacts treatment and life prognosis. Within the UPS, the E3 ligase MuRF1/TRIM63 targets for degradation several myofibrillar proteins, including the main contractile proteins alpha-actin and myosin heavy chain (MHC). We previously identified five E2 ubiquitin-conjugating enzymes interacting with MuRF1, including UBE2L3/UbcH7, that exhibited a high affinity for MuRF1 (KD = 50 nM). Here, we report a main effect of UBE2L3 on alpha-actin and MHC degradation in catabolic C2C12 myotubes. Consistently UBE2L3 knockdown in Tibialis anterior induced hypertrophy in dexamethasone (Dex)-treated mice, whereas overexpression worsened the muscle atrophy of Dex-treated mice. Using combined interactomic approaches, we also characterized the interactions between MuRF1 and its substrates alpha-actin and MHC and found that MuRF1 preferentially binds to filamentous F-actin (KD = 46.7 nM) over monomeric G-actin (KD = 450 nM). By contrast with actin that did not alter MuRF1–UBE2L3 affinity, binding of MHC to MuRF1 (KD = 8 nM) impeded UBE2L3 binding, suggesting that differential interactions prevail with MuRF1 depending on both the substrate and the E2. Our data suggest that UBE2L3 regulates contractile proteins levels and skeletal muscle atrophy.


2021 ◽  
Author(s):  
Lucie M. Wolf ◽  
Annika M. Lambert ◽  
Julie Haenlin ◽  
Michael Boutros

WNT signalling is important for development in all metazoan animals and is associated with various human diseases. The Ubiquitin-Proteasome System (UPS) and regulatory ER-associated degradation (ERAD) have been implicated in the production of WNT proteins. Here, we investigated how the WNT secretory factor EVI/WLS is ubiquitinated, recognised by ERAD components and subsequently removed from the secretory pathway. We performed a focused, immunoblot-based RNAi screen for factors that influence EVI/WLS protein stability. We identified the VCP-binding proteins FAF2 and UBXN4 as novel interaction partners of EVI/WLS and showed that ERLIN2 links EVI/WLS to the ubiquitination machinery. Interestingly, we found in addition that EVI/WLS is ubiquitinated and degraded in cells irrespective of their level of WNT production. This K11, K48, and K63-linked ubiquitination is mediated by the E2 ubiquitin conjugating enzymes UBE2J2, UBE2K, and UBE2N, but independent of the E3 ligases HRD1/SYVN or GP78/AMFR. Taken together, our study identified factors that link the UPS to the WNT secretory pathway and provides mechanistic details on the fate of an endogenous substrate of regulatory ERAD in mammalian cells.


2021 ◽  
Author(s):  
Thanh Thi Le ◽  
Johanna Ainsworth ◽  
Cristian Polo Rivera ◽  
Thomas Macartney ◽  
Karim Labib

Cullin ubiquitin ligases drive replisome disassembly during DNA replication termination.  In worm, frog and mouse cells, CUL2LRR1 is required to ubiquitylate the MCM7 subunit of the CMG helicase.  Here we show that cullin ligases also drive CMG-MCM7 ubiquitylation in human cells, thereby making the helicase into a substrate for the p97 unfoldase.  Using purified human proteins, including a panel of E2 ubiquitin conjugating enzymes, we have reconstituted CMG helicase ubiquitylation, dependent upon neddylated CUL2LRR1.  The reaction is highly specific to CMG-MCM7 and requires the LRR1 substrate targeting subunit, since replacement of LRR1 with the alternative CUL2 adaptor VHL switches ubiquitylation from CMG-MCM7 to HIF1.  CUL2LRR1 firstly drives monoubiquitylation of CMG-MCM7 by the UBE2D class of E2 enzymes.  Subsequently, CUL2LRR1 activates UBE2R1/R2 or UBE2G1/G2 to extend a single K48-linked ubiquitin chain on CMG-MCM7.  Thereby, CUL2LRR1 converts CMG into a substrate for p97, which disassembles the ubiquitylated helicase during DNA replication termination.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1383
Author(s):  
Quyen Thu Bui ◽  
Jeong Hee Hong ◽  
Minseok Kwak ◽  
Ji Yeon Lee ◽  
Peter Chang-Whan Lee

The ubiquitin-mediated degradation system is responsible for controlling various tumor-promoting processes, including DNA repair, cell cycle arrest, cell proliferation, apoptosis, angiogenesis, migration and invasion, metastasis, and drug resistance. The conjugation of ubiquitin to a target protein is mediated sequentially by the E1 (activating)‒E2 (conjugating)‒E3 (ligating) enzyme cascade. Thus, E2 enzymes act as the central players in the ubiquitination system, modulating various pathophysiological processes in the tumor microenvironment. In this review, we summarize the types and functions of E2s in various types of cancer and discuss the possibility of E2s as targets of anticancer therapeutic strategies.


Author(s):  
Wei Lai ◽  
Zhaoyang Hu ◽  
Chuxia Zhu ◽  
Yingui Yang ◽  
Shiqiang Liu ◽  
...  

Protein ubiquitination is one of the most common modifications that can degrade or modify proteins in eukaryotic cells. The E2 ubiquitin-conjugating enzymes (UBCs) are involved in multiple biological processes of eukaryotes and their response to adverse stresses. Genome-wide survey of the UBC gene family has been performed in many plant species but not in cucumber (Cucumis sativus). In this study, a total of 38 UBC family genes (designated as CsUBC1–CsUBC38) were identified in cucumber. The phylogenetic analysis of UBC proteins from cucumber, Arabidopsis and maize indicated that these proteins could be divided into 15 groups. Most of the phylogenetically related CsUBC members had similar conserved motif patterns and gene structures. The CsUBC genes were unevenly distributed on seven chromosomes, and gene duplication analysis indicated that segmental duplication has played a significant role in the expansion of the cucumber UBC gene family. Promoter analysis of these genes resulted in the identification of many hormone-, stress- and development-related cis-elements. The CsUBC genes exhibited differential expression patterns in different tissues and developmental stages of fruit ripening. In addition, a total of 14 CsUBC genes were differentially expressed upon downy mildew (DM) infection compared with the control. Our results lay the foundation for further clarification of the roles of the CsUBC genes in the future.


2021 ◽  
Author(s):  
Vanessa Simoes ◽  
Lana Harley ◽  
Blanche K. Cizubu ◽  
Ye Zhou ◽  
Joshua Pajak ◽  
...  

Protein ubiquitination is an essential process that rapidly regulates protein synthesis, function, and fate in dynamic environments. Among its non-proteolytic functions, K63 ubiquitin accumulates in yeast cells exposed to oxidative stress, stalling ribosomes at elongation. K63 ubiquitin conjugates accumulate because of redox inhibition of the deubiquitinating enzyme Ubp2, however, the role and regulation of ubiquitin conjugating enzymes in this pathway remained unclear. Here we found that the E2 Rad6 binds and modifies elongating ribosomes during oxidative stress. We elucidated a mechanism by which Rad6 and its human homolog UBE2A are redox-regulated by forming reversible disulfides with the E1 activating enzyme, Uba1. We further showed that Rad6 activity is necessary to regulate translation, antioxidant defense, and adaptation to stress. Finally, we showed that Rad6 is required to induce phosphorylation of the translation initiation factor eIF2α, providing a novel link for K63 ubiquitin, elongation stalling, and the integrated stress response.


Sign in / Sign up

Export Citation Format

Share Document