scholarly journals Faculty Opinions recommendation of Outer nuclear membrane protein Kuduk modulates the LINC complex and nuclear envelope architecture.

Author(s):  
Brian Burke
2007 ◽  
Vol 178 (6) ◽  
pp. 897-904 ◽  
Author(s):  
Georgia Salpingidou ◽  
Andrei Smertenko ◽  
Irena Hausmanowa-Petrucewicz ◽  
Patrick J. Hussey ◽  
Chris J. Hutchison

The type II inner nuclear membrane protein emerin is a component of the LINC complex that connects the nuclear lamina to the actin cytoskeleton. In emerin-null or -deficient human dermal fibroblasts we find that the centrosome is detached from the nucleus. Moreover, following siRNA knockdown of emerin in wild-type fibroblasts, the centrosome also becomes detached from the nucleus. We show that emerin interacts with tubulin, and that nocadozole-treated wild-type cells phenocopy the detached centrosome characteristic of emerin-null/deficient cells. We also find that a significant fraction of emerin is located at the outer nuclear membrane and peripheral ER, where it interacts directly with the centrosome. Our data provide the first evidence in mammalian cells as to the nature of the linkage of the centrosome, and therefore the tubulin cytoskeleton, with the outer nuclear membrane.


1999 ◽  
Vol 77 (4) ◽  
pp. 321-329 ◽  
Author(s):  
Khaldon Bodoor ◽  
Sarah Shaikh ◽  
Paul Enarson ◽  
Sharmin Chowdhury ◽  
Davide Salina ◽  
...  

Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. The current view of NPC organization features a massive symmetrical framework that is embedded in the double membranes of the nuclear envelope. It embraces a central channel of as yet ill-defined structure but which may accommodate particles with diameters up to 26 nm provided that they bear specific import/export signals. Attached to both faces of the central framework are peripheral structures, short cytoplasmic filaments, and a nuclear basket assembly, which interact with molecules transiting the NPC. The mechanisms of assembly and the nature of NPC structural intermediates are still poorly understood. However, mutagenesis and expression studies have revealed discrete sequences within certain NPC proteins that are necessary and sufficient for their appropriate targeting. In addition, some details are emerging from observations on cells undergoing mitosis where the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized to form nuclear envelopes in the two daughter cells. To date, it has been possible to define a time course of postmitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral inner nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a dynamic component of the nuclear basket, associates with chromatin towards the end of anaphase coincident with, although independent of, the inner nuclear membrane protein, LAP2. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, p54, p45) during mitosis, and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates and which may therefore represent an essential component of the central framework of the NPC. Key words: nuclear pore complex, nucleoporin, mitosis, nuclear transport


1999 ◽  
Vol 112 (13) ◽  
pp. 2253-2264 ◽  
Author(s):  
K. Bodoor ◽  
S. Shaikh ◽  
D. Salina ◽  
W.H. Raharjo ◽  
R. Bastos ◽  
...  

Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. With a mass of about 125 MDa, NPCs are thought to be composed of 50 or more distinct protein subunits, each present in multiple copies. During mitosis in higher cells the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized. Using both conventional and digital confocal immunofluorescence microscopy we have been able to define a time course of post-mitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a component of the nuclear basket, associates with chromatin towards the end of anaphase, in parallel with the inner nuclear membrane protein, LAP2. However, immunogold labeling suggests that the initial Nup153 chromatin association is membrane-independent. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, 54, 45) during mitosis and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates.


2017 ◽  
Vol 216 (9) ◽  
pp. 2827-2841 ◽  
Author(s):  
Zhao-Ying Ding ◽  
Ying-Hsuan Wang ◽  
Yu-Cheng Huang ◽  
Myong-Chol Lee ◽  
Min-Jen Tseng ◽  
...  

Linker of nucleoskeleton and cytoskeleton (LINC) complexes spanning the nuclear envelope (NE) contribute to nucleocytoskeletal force transduction. A few NE proteins have been found to regulate the LINC complex. In this study, we identify one, Kuduk (Kud), which can reside at the outer nuclear membrane and is required for the development of Drosophila melanogaster ovarian follicles and NE morphology of myonuclei. Kud associates with LINC complex components in an evolutionarily conserved manner. Loss of Kud increases the level but impairs functioning of the LINC complex. Overexpression of Kud suppresses NE targeting of cytoskeleton-free LINC complexes. Thus, Kud acts as a quality control mechanism for LINC-mediated nucleocytoskeletal connections. Genetic data indicate that Kud also functions independently of the LINC complex. Overexpression of the human orthologue TMEM258 in Drosophila proved functional conservation. These findings expand our understanding of the regulation of LINC complexes and NE architecture.


2011 ◽  
Vol 22 (18) ◽  
pp. 3306-3317 ◽  
Author(s):  
Li-Chuan Tseng ◽  
Rey-Huei Chen

The nuclear envelope of metazoans disassembles during mitosis and reforms in late anaphase after sister chromatids have well separated. The coordination of these mitotic events is important for genome stability, yet the temporal control of nuclear envelope reassembly is unknown. Although the steps of nuclear formation have been extensively studied in vitro using the reconstitution system from egg extracts, the temporal control can only be studied in vivo. Here, we use time-lapse microscopy to investigate this process in living HeLa cells. We demonstrate that Cdk1 activity prevents premature nuclear envelope assembly and that phosphorylation of the inner nuclear membrane protein lamin B receptor (LBR) by Cdk1 contributes to the temporal control. We further identify a region in the nucleoplasmic domain of LBR that inhibits premature chromatin binding of the protein. We propose that this inhibitory effect is partly mediated by Cdk1 phosphorylation. Furthermore, we show that the reduced chromatin-binding ability of LBR together with Aurora B activity contributes to nuclear envelope breakdown. Our studies reveal for the first time a mechanism that controls the timing of nuclear envelope reassembly through modification of an integral nuclear membrane protein.


2009 ◽  
Vol 106 (7) ◽  
pp. 2194-2199 ◽  
Author(s):  
K. J. Roux ◽  
M. L. Crisp ◽  
Q. Liu ◽  
D. Kim ◽  
S. Kozlov ◽  
...  

2016 ◽  
Vol 110 (3) ◽  
pp. 596a
Author(s):  
Krishna C. Mudumbi ◽  
Weidong Yang ◽  
Jiong Ma ◽  
Eric C. Schirmer

Sign in / Sign up

Export Citation Format

Share Document