scholarly journals Temporal control of nuclear envelope assembly by phosphorylation of lamin B receptor

2011 ◽  
Vol 22 (18) ◽  
pp. 3306-3317 ◽  
Author(s):  
Li-Chuan Tseng ◽  
Rey-Huei Chen

The nuclear envelope of metazoans disassembles during mitosis and reforms in late anaphase after sister chromatids have well separated. The coordination of these mitotic events is important for genome stability, yet the temporal control of nuclear envelope reassembly is unknown. Although the steps of nuclear formation have been extensively studied in vitro using the reconstitution system from egg extracts, the temporal control can only be studied in vivo. Here, we use time-lapse microscopy to investigate this process in living HeLa cells. We demonstrate that Cdk1 activity prevents premature nuclear envelope assembly and that phosphorylation of the inner nuclear membrane protein lamin B receptor (LBR) by Cdk1 contributes to the temporal control. We further identify a region in the nucleoplasmic domain of LBR that inhibits premature chromatin binding of the protein. We propose that this inhibitory effect is partly mediated by Cdk1 phosphorylation. Furthermore, we show that the reduced chromatin-binding ability of LBR together with Aurora B activity contributes to nuclear envelope breakdown. Our studies reveal for the first time a mechanism that controls the timing of nuclear envelope reassembly through modification of an integral nuclear membrane protein.

2004 ◽  
Vol 279 (24) ◽  
pp. 25567-25573 ◽  
Author(s):  
Dimitra Makatsori ◽  
Niki Kourmouli ◽  
Hara Polioudaki ◽  
Leonard D. Shultz ◽  
Kelvin Mclean ◽  
...  

2003 ◽  
Vol 279 (12) ◽  
pp. 11626-11631 ◽  
Author(s):  
Ilias Mylonis ◽  
Victoria Drosou ◽  
Stefano Brancorsini ◽  
Eleni Nikolakaki ◽  
Paolo Sassone-Corsi ◽  
...  

1996 ◽  
Vol 135 (6) ◽  
pp. 1715-1725 ◽  
Author(s):  
P Collas ◽  
J C Courvalin ◽  
D Poccia

We have identified an integral membrane protein of sea urchin gametes with an apparent molecular mass of 56 kD that cross-reacts with an antibody against the nucleoplasmic NH2-terminal domain of human lamin B receptor (LBR). In mature sperm, p56 is located at the tip and base of the nucleus from where it is removed by egg cytosol in vitro. In the egg, p56 is present in a subset of cytoplasmic membranes (MV2 beta) which contributes the bulk of the nuclear envelope during male pronuclear formation. p56-containing vesicles are required for nuclear envelope assembly and have a chromatin-binding capacity that is mediated by p56. Lamin B is not present in these vesicles and is imported into the nucleus from a soluble pool at a later stage of pronuclear formation. Lamin B incorporation and addition of new membranes are necessary for pronuclear swelling and nuclear envelope growth. We suggest that p56 is a sea urchin LBR homologue that targets membranes to chromatin and later anchors the membrane to the lamina.


1999 ◽  
Vol 144 (2) ◽  
pp. 225-240 ◽  
Author(s):  
Sheona Drummond ◽  
Paul Ferrigno ◽  
Carol Lyon ◽  
Jackie Murphy ◽  
Martin Goldberg ◽  
...  

In this work, we have used novel mAbs against two proteins of the endoplasmic reticulum and outer nuclear membrane, termed NEP-B78 and p65, in addition to a polyclonal antibody against the inner nuclear membrane protein LBR (lamin B receptor), to study the order and dynamics of NE reassembly in the Xenopus cell-free system. Using these reagents, we demonstrate differences in the timing of recruitment of their cognate membrane proteins to the surface of decondensing chromatin in both the cell-free system and XLK-2 cells. We show unequivocally that, in the cell-free system, two functionally and biochemically distinct vesicle types are necessary for NE assembly. We find that the process of distinct vesicle recruitment to chromatin is an ordered one and that NEP-B78 defines a vesicle population involved in the earliest events of reassembly in this system. Finally, we present evidence that NEP-B78 may be required for the targeting of these vesicles to the surface of decondensing chromatin in this system. The results have important implications for the understanding of the mechanisms of nuclear envelope disassembly and reassembly during mitosis and for the development of systems to identify novel molecules that control these processes.


2001 ◽  
Vol 114 (24) ◽  
pp. 4575-4585 ◽  
Author(s):  
Tokuko Haraguchi ◽  
Takako Koujin ◽  
Miriam Segura-Totten ◽  
Kenneth K. Lee ◽  
Yosuke Matsuoka ◽  
...  

Mutations in emerin cause the X-linked recessive form of Emery-Dreifuss muscular dystrophy (EDMD). Emerin localizes at the inner membrane of the nuclear envelope (NE) during interphase, and diffuses into the ER when the NE disassembles during mitosis. We analyzed the recruitment of wildtype and mutant GFP-tagged emerin proteins during nuclear envelope assembly in living HeLa cells. During telophase, emerin accumulates briefly at the ‘core’ region of telophase chromosomes, and later distributes over the entire nuclear rim. Barrier-to-autointegration factor (BAF), a protein that binds nonspecifically to double-stranded DNA in vitro, co-localized with emerin at the ‘core’ region of chromosomes during telophase. An emerin mutant defective for binding to BAF in vitro failed to localize at the ‘core’ in vivo, and subsequently failed to localize at the reformed NE. In HeLa cells that expressed BAF mutant G25E, which did not show ‘core’ localization, the endogenous emerin proteins failed to localize at the ‘core’ region during telophase, and did not assemble into the NE during the subsequent interphase. BAF mutant G25E also dominantly dislocalized LAP2β and lamin A from the NE, but had no effect on the localization of lamin B. We conclude that BAF is required for the assembly of emerin and A-type lamins at the reforming NE during telophase, and may mediate their stability in the subsequent interphase.


1999 ◽  
Vol 77 (4) ◽  
pp. 321-329 ◽  
Author(s):  
Khaldon Bodoor ◽  
Sarah Shaikh ◽  
Paul Enarson ◽  
Sharmin Chowdhury ◽  
Davide Salina ◽  
...  

Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. The current view of NPC organization features a massive symmetrical framework that is embedded in the double membranes of the nuclear envelope. It embraces a central channel of as yet ill-defined structure but which may accommodate particles with diameters up to 26 nm provided that they bear specific import/export signals. Attached to both faces of the central framework are peripheral structures, short cytoplasmic filaments, and a nuclear basket assembly, which interact with molecules transiting the NPC. The mechanisms of assembly and the nature of NPC structural intermediates are still poorly understood. However, mutagenesis and expression studies have revealed discrete sequences within certain NPC proteins that are necessary and sufficient for their appropriate targeting. In addition, some details are emerging from observations on cells undergoing mitosis where the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized to form nuclear envelopes in the two daughter cells. To date, it has been possible to define a time course of postmitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral inner nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a dynamic component of the nuclear basket, associates with chromatin towards the end of anaphase coincident with, although independent of, the inner nuclear membrane protein, LAP2. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, p54, p45) during mitosis, and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates and which may therefore represent an essential component of the central framework of the NPC. Key words: nuclear pore complex, nucleoporin, mitosis, nuclear transport


2010 ◽  
Vol 21 (2) ◽  
pp. 354-368 ◽  
Author(s):  
Monika Zwerger ◽  
Thorsten Kolb ◽  
Karsten Richter ◽  
Iakowos Karakesisoglou ◽  
Harald Herrmann

Lamin B receptor (LBR) is an inner nuclear membrane protein involved in tethering the nuclear lamina and the underlying chromatin to the nuclear envelope. In addition, LBR exhibits sterol reductase activity. Mutations in the LBR gene cause two different human diseases: Pelger-Huët anomaly and Greenberg skeletal dysplasia, a severe chrondrodystrophy causing embryonic death. Our study aimed at investigating the effect of five LBR disease mutants on human cultured cells. Three of the tested LBR mutants caused a massive compaction of chromatin coincidental with the formation of a large nucleus-associated vacuole (NAV) in several human cultured cell lines. Live cell imaging and electron microscopy revealed that this structure was generated by the separation of the inner and outer nuclear membrane. During NAV formation, nuclear pore complexes and components of the linker of nucleoskeleton and cytoskeleton complex were lost in areas of membrane separation. Concomitantly, a large number of smaller vacuoles formed throughout the cytoplasm. Notably, forced expression of the two structurally related sterol reductases transmembrane 7 superfamily member 2 and 7-dehydrocholesterol reductase caused, even in their wild-type form, a comparable phenotype in susceptible cell lines. Hence, LBR mutant variants and sterol reductases can severely interfere with the regular organization of the nuclear envelope and the endoplasmic reticulum.


1992 ◽  
Vol 119 (1) ◽  
pp. 17-25 ◽  
Author(s):  
N Ulitzur ◽  
A Harel ◽  
N Feinstein ◽  
Y Gruenbaum

The role of the Drosophila lamin protein in nuclear envelope assembly was studied using a Drosophila in vitro assembly system that reconstitutes nuclei from added sperm chromatin or naked DNA. Upon incubation of the embryonic assembly extract with anti-Drosophila lamin antibodies, the attachment of nuclear membrane vesicles to chromatin surface and nuclear envelope formation did not occur. Lamina assembly and nuclear membrane vesicles attachment to the chromatin were inhibited only when the activity of the 75-kD lamin isoform was inhibited in both soluble and membrane-vesicles fractions. Incubation of decondensed sperm chromatin with an extract that was depleted of nuclear membranes revealed the presence of lamin molecules on the chromatin periphery. In addition, high concentrations of bacterially expressed lamin molecules added to the extract, were able to associate with the chromatin periphery, and did not inhibit nuclear envelope assembly. After nuclear reconstitution, a fraction of the lamin pool was converted into the typical 74- and 76-kD isoforms. Together, these data strongly support an essential role of the lamina in nuclear envelope assembly.


Sign in / Sign up

Export Citation Format

Share Document