quality control mechanism
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 67)

H-INDEX

32
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Karim Labib ◽  
Ryo Fujisawa

The unfolding of ubiquitylated proteins by the p97 / Cdc48 ATPase and its ubiquitin receptors Ufd1-Npl4 is essential in many areas of eukaryotic cell biology. Previous studies showed that yeast Cdc48-Ufd1-Npl4 is governed by a quality control mechanism, whereby substrates must be conjugated to at least five ubiquitins. Here we show that substrate processing by mammalian p97-UFD1-NPL4 involves a complex interplay between ubiquitin chain length and additional p97 cofactors. Using disassembly of the ubiquitylated CMG helicase as a model in vitro system, we find that reconstituted p97-UFD1-NPL4 only unfolds substrates with very long ubiquitin chains. However, this high ubiquitin threshold is greatly reduced, to a level resembling yeast Cdc48-Ufd1-Npl4, by the UBXN7, FAF1 or FAF2 partners of mammalian p97-UFD1-NPL4. Stimulation by UBXN7/FAF1/FAF2 requires the UBX domain that connects each factor to p97, together with the ubiquitin-binding UBA domain of UBXN7 and a previously uncharacterised coiled-coil domain in FAF1/FAF2. Furthermore, we show that deletion of the UBXN7 and FAF1 genes impairs CMG disassembly during S-phase and mitosis and sensitises cells to reduced ubiquitin ligase activity. These findings indicate that multiple UBX proteins are important for the efficient unfolding of ubiquitylated proteins by p97-UFD1-NPL4 in mammalian cells.


2022 ◽  
Author(s):  
Megha Bansal ◽  
Kapil Sirohi ◽  
Shivranjani C Moharir ◽  
Ghanshyam Swarup

Autophagy is a conserved quality control mechanism that removes damaged proteins, organelles and invading bacteria through lysosome-mediated degradation. During autophagy several organelles including endoplasmic reticulum, mitochondria, plasma membrane and endosomes contribute membrane for autophagosome formation. However, the mechanisms and proteins involved in membrane delivery to autophagosomes are not clear. Optineurin (OPTN), a cytoplasmic adaptor protein, is involved in promoting maturation of phagophores into autophagosomes; it is also involved in regulating endocytic trafficking and recycling of transferrin receptor (TFRC). Here, we have examined the role of optineurin in the delivery of membrane from TFRC-positive endosomes to autophagosomes. Only a small fraction of autophagosomes was positive for TFRC, indicating that TFRC-positive endosomes could contribute membrane to a subset of autophagosomes. The percentage of TFRC-positive autophagosomes was reduced in Optineurin knockout mouse embryonic fibroblasts (Optn-/-MEFs) in comparison with normal MEFs. Upon over-expression of optineurin, the percentage of TFRC-positive autophagosomes was increased in Optn-/- MEFs. Unlike wild-type optineurin, a disease-associated mutant, E478G, defective in ubiquitin binding, was not able to enhance formation of TFRC-positive autophagosomes in Optn-/- MEFs. TFRC degradation mediated by autophagy was decreased in optineurin deficient cells. Our results suggest that optineurin mediates delivery of TFRC and perhaps associated membrane from TFRC-positive endosomes to autophagosomes, and this may contribute to autophagosome formation.


2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Rodrigo Campos-Silva ◽  
Gaetano D’Urso ◽  
Olivier Delalande ◽  
Emmanuel Giudice ◽  
Alexandre José Macedo ◽  
...  

Because of the ever-increasing multidrug resistance in microorganisms, it is crucial that we find and develop new antibiotics, especially molecules with different targets and mechanisms of action than those of the antibiotics in use today. Translation is a fundamental process that uses a large portion of the cell’s energy, and the ribosome is already the target of more than half of the antibiotics in clinical use. However, this process is highly regulated, and its quality control machinery is actively studied as a possible target for new inhibitors. In bacteria, ribosomal stalling is a frequent event that jeopardizes bacterial wellness, and the most severe form occurs when ribosomes stall at the 3′-end of mRNA molecules devoid of a stop codon. Trans-translation is the principal and most sophisticated quality control mechanism for solving this problem, which would otherwise result in inefficient or even toxic protein synthesis. It is based on the complex made by tmRNA and SmpB, and because trans-translation is absent in eukaryotes, but necessary for bacterial fitness or survival, it is an exciting and realistic target for new antibiotics. Here, we describe the current and future prospects for developing what we hope will be a novel generation of trans-translation inhibitors.


2021 ◽  
Author(s):  
Gregor Luetzenburg ◽  
Kristian Svennevig ◽  
Anders Anker Bjørk ◽  
Marie Keiding ◽  
Aart Kroon

Abstract. Landslides are a frequent natural hazard occurring globally in regions with steep topography. Additionally, landslides are playing an important role in landscape evolution by transporting sediment downslope. Landslide inventory mapping is a common technique to assess the spatial distribution and extend of landslides in an area of interest. High-resolution digital elevation models (DEMs) have proven to be useful databases to map landslides in large areas across different land covers and topography. So far, Denmark had no national landslide inventory. Here we create the first comprehensive national landslide inventory for Denmark derived from a 40 cm resolution DEM from 2015 supported by several 12.5 cm resolution orthophotos. The landslide inventory is created based on a manual expert-based mapping approach, and we implemented a quality control mechanism to assess the completeness of the inventory. Overall, we mapped 3202 landslide polygons in Denmark with a level of completeness of 87 %. The landslide inventory can act as a starting point for a more comprehensive hazard and risk reduction framework for Denmark. Furthermore, machine-learning algorithms can use the dataset as a training dataset to improve future automated mapping approaches. The complete landslide inventory is made freely available for download at https://doi.org/10.6084/m9.figshare.16965439.v1 (Svennevig and Luetzenburg, 2021) or as web map (https://data.geus.dk/landskred/) for further investigations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tatiana V. Denisenko ◽  
Vladimir Gogvadze ◽  
Boris Zhivotovsky

AbstractIn order to maintain a functional mitochondrial network, cells have developed a quality control mechanism, namely mitophagy. This process can be induced through different pathways. The most studied is the so-called PINK1/Parkin pathway, which is associated with ubiquitylation of several mitochondrial proteins that were initially found to be related to Parkinson’s disease. Another type of mitophagy is known as receptor-mediated mitophagy, which includes proteins, such as BNIP3 and BNIP3L, also known as Nix. Through these two mechanisms, mitophagy fulfills its functions and maintains cellular homeostasis. Here, we summarize the current knowledge about the mechanisms of mitophagy regulation and their interplay with cancer progression as well as anticancer treatment.


2021 ◽  
Vol 28 ◽  
Author(s):  
Syed Mohammad Zakariya ◽  
Aiman Zehr ◽  
Rizwan Hasan Khan

: The failure of protein to correctly fold into its functional and unique three dimensional form leads to misfolded or partially folded protein. When these rogue proteins and polypeptides escape the quality control mechanism within the body, they result in aberrant aggregation of proteins into characteristic amyloid fibrils. This is the main cause for the number of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s and Huntington’s diseases. This review aims to summarise the underlying mechanisms of protein folding, misfolding and aggregation. It also highlights the recent technologies for the structural characterisation and detection of amyloid fibrils in addition to the various factors responsible for the aggregate formation and the strategies to combat the aggregation process. Besides, the journey from origin to the current scenario of protein aggregation is also concisely discussed.


2021 ◽  
Author(s):  
Christopher Soelistyo ◽  
Giulia Vallardi ◽  
Guillaume Charras ◽  
Alan R Lowe

Deep learning is now a powerful tool in microscopy data analysis, and is routinely used for image processing applications such as segmentation and denoising. However, it has rarely been used to directly learn mechanistic models of a biological system, owing to the complexity of the internal representations. Here, we develop an end-to-end machine learning model capable of learning the rules of a complex biological phenomenon, cell competition, directly from a large corpus of timelapse microscopy data. Cell competition is a quality control mechanism that eliminates unfit cells from a tissue and during which cell fate is thought to be determined by the local cellular neighborhood over time. To investigate this, we developed a new approach (τ-VAE) by coupling a variational autoencoder to a temporal convolution network to predict the fate of each cell in an epithelium. Using the τ-VAE's latent representation of the local tissue organization and the flow of information in the network, we decode the physical parameters responsible for correct prediction of fate in cell competition. Remarkably, the model autonomously learns that cell density is the single most important factor in predicting cell fate -- a conclusion that has taken over a decade of traditional experimental research to reach. Finally, to test the learned internal representation, we challenge the network with experiments performed in the presence of drugs that block signalling pathways involved in competition. We present a novel discriminator network that, using the predictions of the τ-VAE, can identify conditions which deviate from the normal behaviour, paving the way for automated, mechanism-aware drug screening.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1810
Author(s):  
Luka A. Clarke ◽  
Vanessa C. C. Luz ◽  
Szymon Targowski ◽  
Sofia S. Ramalho ◽  
Carlos M. Farinha ◽  
...  

Major advances have recently been made in the development and application of CFTR (cystic fibrosis transmembrane conductance regulator) mutation class-specific modulator therapies, but to date, there are no approved modulators for Class I mutations, i.e., those introducing a premature termination codon (PTC) into the CFTR mRNA. Such mutations induce nonsense-mediated decay (NMD), a cellular quality control mechanism that reduces the quantity of PTC bearing mRNAs, presumably to avoid translation of potentially deleterious truncated CFTR proteins. The NMD-mediated reduction of PTC-CFTR mRNA molecules reduces the efficacy of one of the most promising approaches to treatment of such mutations, namely, PTC readthrough therapy, using molecules that induce the incorporation of near-cognate amino acids at the PTC codon, thereby enabling translation of a full-length protein. In this study, we measure the effect of three different PTC mutations on the abundance, integrity, and stability of respective CFTR mRNAs, using CFTR specific RT-qPCR-based assays. Altogether, our data suggest that optimized rescue of PTC mutations has to take into account (1) the different steady-state levels of the CFTR mRNA associated with each specific PTC mutation; (2) differences in abundance between the 3′ and 5′ regions of CFTR mRNA, even following PTC readthrough or NMD inhibition; and (3) variable effects on CFTR mRNA stability for each specific PTC mutation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aleix Elizalde-Torrent ◽  
Claudia Trejo-Soto ◽  
Lourdes Méndez-Mora ◽  
Marc Nicolau ◽  
Oihane Ezama ◽  
...  

AbstractThe spleen is a hematopoietic organ that participates in cellular and humoral immunity. It also serves as a quality control mechanism for removing senescent and/or poorly deformable red blood cells (RBCs) from circulation. Pitting is a specialized process by which the spleen extracts particles, including malaria parasites, from within circulating RBCs during their passage through the interendothelial slits (IES) in the splenic cords. To study this physiological function in vitro, we have developed two microfluidic devices modeling the IES, according to the hypothesis that at a certain range of mechanical stress on the RBC, regulated through both slit size and blood flow, would force it undergo the pitting process without affecting the cell integrity. To prove its functionality in replicating pitting of malaria parasites, we have performed a characterization of P. falciparum-infected RBCs (P.f.-RBCs) after their passage through the devices, determining hemolysis and the proportion of once-infected RBCs (O-iRBCs), defined by the presence of a parasite antigen and absence of DAPI staining of parasite DNA using a flow cytometry-based approach. The passage of P.f.-RBCs through the devices at the physiological flow rate did not affect cell integrity and resulted in an increase of the frequency of O-iRBCs. Both microfluidic device models were capable to replicate the pitting of P.f.-RBCs ex vivo by means of mechanical constraints without cellular involvement, shedding new insights on the role of the spleen in the pathophysiology of malaria.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2638
Author(s):  
Carole Luthold ◽  
Herman Lambert ◽  
Solenn M. Guilbert ◽  
Marc-Antoine Rodrigue ◽  
Margit Fuchs ◽  
...  

The cochaperone BCL2-associated athanogene 3 (BAG3), in complex with the heat shock protein HSPB8, facilitates mitotic rounding, spindle orientation, and proper abscission of daughter cells. BAG3 and HSPB8 mitotic functions implicate the sequestosome p62/SQSTM1, suggesting a role for protein quality control. However, the interplay between this chaperone-assisted pathway and the mitotic machinery is not known. Here, we show that BAG3 phosphorylation at the conserved T285 is regulated by CDK1 and activates its function in mitotic cell shape remodeling. BAG3 phosphorylation exhibited a high dynamic at mitotic entry and both a non-phosphorylatable BAG3T285A and a phosphomimetic BAG3T285D protein were unable to correct the mitotic defects in BAG3-depleted HeLa cells. We also demonstrate that BAG3 phosphorylation, HSPB8, and CDK1 activity modulate the molecular assembly of p62/SQSTM1 into mitotic bodies containing K63 polyubiquitinated chains. These findings suggest the existence of a mitotically regulated spatial quality control mechanism for the fidelity of cell shape remodeling in highly dividing cells.


Sign in / Sign up

Export Citation Format

Share Document