lamin b receptor
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 16)

H-INDEX

38
(FIVE YEARS 2)

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 669
Author(s):  
Lenka Stixová ◽  
Denisa Komůrková ◽  
Alena Svobodová Kovaříková ◽  
Paolo Fagherazzi ◽  
Eva Bártová

METTL16 methyltransferase is responsible for the methylation of N6-adenosine (m6A) in several RNAs. In mouse cells, we showed that the nuclear distribution of METTL16 is cell cycle-specific. In the G1/S phases, METTL16 accumulates to the nucleolus, while in the G2 phase, the level of METTL16 increases in the nucleoplasm. In metaphase and anaphase, there is a very low pool of the METTL16 protein, but in telophase, residual METTL16 appears to be associated with the newly formed nuclear lamina. In A-type lamin-depleted cells, we observed a reduction of METTL16 when compared with the wild-type counterpart. However, METTL16 does not interact with A-type and B-type lamins, but interacts with Lamin B Receptor (LBR) and Lap2α. Additionally, Lap2α depletion caused METTL16 downregulation in the nuclear pool. Furthermore, METTL16 interacted with DDB2, a key protein of the nucleotide excision repair (NER), and also with nucleolar proteins, including TCOF, NOLC1, and UBF1/2, but not fibrillarin. From this view, the METTL16 protein may also regulate the transcription of ribosomal genes because we observed that the high level of m6A in 18S rRNA appeared in cells with upregulated METTL16.


2021 ◽  
Vol 14 (7) ◽  
Author(s):  
Abdulsalam I. Isiaku ◽  
Zuobing Zhang ◽  
Vahid Pazhakh ◽  
Harriet R. Manley ◽  
Ella R. Thompson ◽  
...  

ABSTRACT Zebrafish are an important model for studying phagocyte function, but rigorous experimental systems to distinguish whether phagocyte-dependent effects are neutrophil or macrophage specific have been lacking. We have developed and validated transgenic lines that enable superior demonstration of cell-autonomous neutrophil and macrophage genetic requirements. We coupled well-characterized neutrophil- and macrophage-specific Gal4 driver lines with UAS:Cas9 transgenes for selective expression of Cas9 in either neutrophils or macrophages. Efficient gene editing, confirmed by both Sanger and next-generation sequencing, occurred in both lineages following microinjection of efficacious synthetic guide RNAs into zebrafish embryos. In proof-of-principle experiments, we demonstrated molecular and/or functional evidence of on-target gene editing for several genes (mCherry, lamin B receptor, trim33) in either neutrophils or macrophages as intended. These new UAS:Cas9 tools provide an improved resource for assessing individual contributions of neutrophil- and macrophage-expressed genes to the many physiological processes and diseases modelled in zebrafish. Furthermore, this gene-editing functionality can be exploited in any cell lineage for which a lineage-specific Gal4 driver is available. This article has an associated First Person interview with the first author of the paper.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stephanie L. Silva-Del Toro ◽  
Lee-Ann H. Allen

Neutrophils (also called polymorphonuclear leukocytes, PMNs) are heterogeneous and can exhibit considerable phenotypic and functional plasticity. In keeping with this, we discovered previously that Helicobacter pylori infection induces N1-like subtype differentiation of human PMNs that is notable for profound nuclear hypersegmentation. Herein, we utilized biochemical approaches and confocal and super-resolution microscopy to gain insight into the underlying molecular mechanisms. Sensitivity to inhibition by nocodazole and taxol indicated that microtubule dynamics were required to induce and sustain hypersegmentation, and super-resolution Stimulated Emission Depletion (STED) imaging demonstrated that microtubules were significantly more abundant and longer in hypersegmented cells. Dynein activity was also required, and enrichment of this motor protein at the nuclear periphery was enhanced following H. pylori infection. In contrast, centrosome splitting did not occur, and lamin B receptor abundance and ER morphology were unchanged. Finally, analysis of STED image stacks using Imaris software revealed that nuclear volume increased markedly prior to the onset of hypersegmentation and that nuclear size was differentially modulated by nocodazole and taxol in the presence and absence of infection. Taken together, our data define a new mechanism of hypersegmentation that is mediated by microtubules and dynein and as such advance understanding of processes that regulate nuclear morphology.


Bone ◽  
2020 ◽  
Vol 141 ◽  
pp. 115601
Author(s):  
Meagan Collins ◽  
Valancy Miranda ◽  
Justine Rousseau ◽  
Lisa E. Kratz ◽  
Philippe M. Campeau

2020 ◽  
pp. 16-17
Author(s):  
Sundari S ◽  
Javeri Aarti Harish

Greenberg’s Dysplasia, also known as Hydrops-Ectopic calcification-Moth-Eaten (HEM) Skeletal Dysplasia, is a rare autosomal recessive osteochondrodysplasia, caused by mutation in the Lamin B Receptor (LBR) Gene, on chromosome 1q42.


Author(s):  
Haruka Oda ◽  
Satsuki Kato ◽  
Keita Ohsumi ◽  
Mari Iwabuchi

Abstract In the nucleus of eukaryotic cells, chromatin is tethered to the nuclear envelope (NE), wherein inner nuclear membrane proteins (INMPs) play major roles. However, in Xenopus blastula, chromatin tethering to the NE depends on nuclear filamentous actin that develops in a blastula-specific manner. To investigate whether chromatin tethering operates in the blastula through INMPs, we experimentally introduced INMPs into Xenopus egg extracts that recapitulate nuclear formation in fertilized eggs. When expressed in extracts in which polymerization of actin is inhibited, only lamin B receptor (LBR), among the five INMPs tested, tethered chromatin to the NE, depending on its N2 and N3 domains responsible for chromatin-protein binding. N2-3-deleted LBR did not tether chromatin, although it was localized in the nuclei. We subsequently found that the LBR level was very low in the Xenopus blastula but was elevated after the blastula stage. When the LBR level was precociously elevated in the blastula by injecting LBR mRNA, it induced alterations in nuclear laminar architecture and nuclear morphology, and caused DNA damage and abnormal mitotic spindles, depending on the N2-3 domains. These results suggest that LBR-mediated chromatin tethering is circumvented in the Xenopus blastula, as it is detrimental to embryonic development.


2020 ◽  
Vol 133 (16) ◽  
pp. jcs252684

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Andri Christodoulou is first author on ‘TMEM147 interacts with lamin B receptor, regulates its localization and levels, and affects cholesterol homeostasis’, published in JCS. Andri conducted the research described in this article while a postdoc in Professor Niovi Santama's lab at the Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus. She is now a postdoc in the lab of Dr Paris Skourides at the Department of Biological Sciences, University of Cyprus, investigating the role of transmembrane proteins in the morphogenesis and function of the endoplasmic reticulum.


2020 ◽  
Vol 477 (14) ◽  
pp. 2715-2720
Author(s):  
Susana Castro-Obregón

The nuclear envelope is composed by an outer nuclear membrane and an inner nuclear membrane, which is underlain by the nuclear lamina that provides the nucleus with mechanical strength for maintaining structure and regulates chromatin organization for modulating gene expression and silencing. A layer of heterochromatin is beneath the nuclear lamina, attached by inner nuclear membrane integral proteins such as Lamin B receptor (LBR). LBR is a chimeric protein, having also a sterol reductase activity with which it contributes to cholesterol synthesis. Lukasova et al. showed that when DNA is damaged by ɣ-radiation in cancer cells, LBR is lost causing chromatin structure changes and promoting cellular senescence. Cellular senescence is characterized by terminal cell cycle arrest and the expression and secretion of various growth factors, cytokines, metalloproteinases, etc., collectively known as senescence-associated secretory phenotype (SASP) that cause chronic inflammation and tumor progression when they persist in the tissue. Therefore, it is fundamental to understand the molecular basis for senescence establishment, maintenance and the regulation of SASP. The work of Lukasova et al. contributed to our understanding of cellular senescence establishment and provided the basis that lead to the further discovery that chromatin changes caused by LBR reduction induce an up-regulated expression of SASP factors. LBR dysfunction has relevance in several diseases and possibly in physiological aging. The potential bifunctional role of LBR on cellular senescence establishment, namely its role in chromatin structure together with its enzymatic activity contributing to cholesterol synthesis, provide a new target to develop potential anti-aging therapies.


Sign in / Sign up

Export Citation Format

Share Document