Faculty Opinions recommendation of DNA replication-coupled histone modification maintains Polycomb gene silencing in plants.

Author(s):  
Yuehui He
PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251660
Author(s):  
Mark Boltengagen ◽  
Anke Samel-Pommerencke ◽  
David Fechtig ◽  
Ann E. Ehrenhofer-Murray

The acetylation of H4 lysine 16 (H4 K16Ac) in Saccharomyces cerevisiae counteracts the binding of the heterochromatin complex SIR to chromatin and inhibits gene silencing. Contrary to other histone acetylation marks, the H4 K16Ac level is high on genes with low transcription, whereas highly transcribed genes show low H4 K16Ac. Approximately 60% of cellular H4 K16Ac in S. cerevisiae is provided by the SAS-I complex, which consists of the MYST-family acetyltransferase Sas2, Sas4 and Sas5. The absence of SAS-I causes inappropriate spreading of the SIR complex and gene silencing in subtelomeric regions. Here, we investigated the genome-wide dynamics of SAS-I dependent H4 K16Ac during DNA replication. Replication is highly disruptive to chromatin and histone marks, since histones are removed to allow progression of the replication fork, and chromatin is reformed with old and new histones after fork passage. We found that H4 K16Ac appears in chromatin immediately upon replication. Importantly, this increase depends on the presence of functional SAS-I complex. Moreover, the appearance of H4 K16Ac is delayed in genes that are strongly transcribed. This indicates that transcription counteracts SAS-I-mediated H4 K16 acetylation, thus “sculpting” histone modification marks at the time of replication. We furthermore investigated which acetyltransferase acts redundantly with SAS-I to acetylate H4 K16Ac. esa1Δ sds3Δ cells, which were also sas2Δ sir3Δ in order to maintain viability, contained no detectable H4 K16Ac, showing that Esa1 and Sas2 are redundant for cellular H4 K16 acetylation. Furthermore, esa1Δ sds3Δ sas2Δ sir3Δ showed a more pronounced growth defect compared to the already defective esa1Δ sds3Δ sir3Δ. This indicates that SAS-I has cellular functions beyond preventing the spreading of heterochromatin.


Science ◽  
2017 ◽  
Vol 357 (6356) ◽  
pp. 1146-1149 ◽  
Author(s):  
Danhua Jiang ◽  
Frédéric Berger

2012 ◽  
Vol 86 (18) ◽  
pp. 9817-9827 ◽  
Author(s):  
Alexandra Nitzsche ◽  
Charlotte Steinhäußer ◽  
Katrin Mücke ◽  
Christina Paulus ◽  
Michael Nevels

In the nuclei of permissive cells, human cytomegalovirus genomes form nucleosomal structures initially resembling heterochromatin but gradually switching to a euchromatin-like state. This switch is characterized by a decrease in histone H3 K9 methylation and a marked increase in H3 tail acetylation and H3 K4 methylation across the viral genome. We used ganciclovir and a mutant virus encoding a reversibly destabilized DNA polymerase to examine the impact of DNA replication on histone modification dynamics at the viral chromatin. The changes in H3 tail acetylation and H3 K9 methylation proceeded in a DNA replication-independent fashion. In contrast, the increase in H3 K4 methylation proved to depend widely on viral DNA synthesis. Consistently, labeling of nascent DNA using “click chemistry” revealed preferential incorporation of methylated H3 K4 into viral (but not cellular) chromatin during or following DNA replication. This study demonstrates largely selective epigenetic tagging of postreplicative human cytomegalovirus chromatin.


2018 ◽  
Vol 72 (2) ◽  
pp. 239-249.e5 ◽  
Author(s):  
Nazaret Reverón-Gómez ◽  
Cristina González-Aguilera ◽  
Kathleen R. Stewart-Morgan ◽  
Nataliya Petryk ◽  
Valentin Flury ◽  
...  

Author(s):  
Y. Hu ◽  
A. Tareen ◽  
Y-J. Sheu ◽  
W. T. Ireland ◽  
C. Speck ◽  
...  

AbstractDNA replication in eukaryotic cells initiates from chromosomal locations, called replication origins, that bind the Origin Recognition Complex (ORC) prior to S phase. Origin establishment is guided by well-defined DNA sequence motifs in Saccharomyces cerevisiae and some other budding yeasts, but most eukaryotes lack sequence-specific origins. At present, the mechanistic and evolutionary reasons for this difference are unclear. A 3.9 Å structure of S. cerevisiae ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) bound to origin DNA revealed, among other things, that a loop within Orc2 inserts into a DNA minor groove and an α-helix within Orc4 inserts into a DNA major groove1. We show that this Orc4 α-helix mediates the sequence-specificity of origins in S. cerevisiae. Specifically, mutations were identified within this α-helix that alter the sequence-dependent activity of individual origins as well as change global genomic origin firing patterns. This was accomplished using a massively parallel origin selection assay analyzed using a custom mutual-information-based modeling approach and a separate analysis of whole-genome replication profiling and statistics. Interestingly, the sequence specificity of DNA replication initiation, as mediated by the Orc4 α-helix, has evolved in close conjunction with the gain of ORC-Sir4-mediated gene silencing and the loss of RNA interference.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Y. Hu ◽  
A. Tareen ◽  
Y-J. Sheu ◽  
W. T. Ireland ◽  
C. Speck ◽  
...  

Abstract DNA replication in eukaryotic cells initiates from replication origins that bind the Origin Recognition Complex (ORC). Origin establishment requires well-defined DNA sequence motifs in Saccharomyces cerevisiae and some other budding yeasts, but most eukaryotes lack sequence-specific origins. A 3.9 Å structure of S. cerevisiae ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) bound to origin DNA revealed that a loop within Orc2 inserts into a DNA minor groove and an α-helix within Orc4 inserts into a DNA major groove. Using a massively parallel origin selection assay coupled with a custom mutual-information-based modeling approach, and a separate analysis of whole-genome replication profiling, here we show that the Orc4 α-helix contributes to the DNA sequence-specificity of origins in S. cerevisiae and Orc4 α-helix mutations change genome-wide origin firing patterns. The DNA sequence specificity of replication origins, mediated by the Orc4 α-helix, has co-evolved with the gain of ORC-Sir4-mediated gene silencing and the loss of RNA interference.


2003 ◽  
Vol 5 (7) ◽  
pp. 668-674 ◽  
Author(s):  
Véronique Azuara ◽  
Karen E. Brown ◽  
Ruth R. E. Williams ◽  
Natasha Webb ◽  
Niall Dillon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document