scholarly journals Histone H3 Lysine 4 Methylation Marks Postreplicative Human Cytomegalovirus Chromatin

2012 ◽  
Vol 86 (18) ◽  
pp. 9817-9827 ◽  
Author(s):  
Alexandra Nitzsche ◽  
Charlotte Steinhäußer ◽  
Katrin Mücke ◽  
Christina Paulus ◽  
Michael Nevels

In the nuclei of permissive cells, human cytomegalovirus genomes form nucleosomal structures initially resembling heterochromatin but gradually switching to a euchromatin-like state. This switch is characterized by a decrease in histone H3 K9 methylation and a marked increase in H3 tail acetylation and H3 K4 methylation across the viral genome. We used ganciclovir and a mutant virus encoding a reversibly destabilized DNA polymerase to examine the impact of DNA replication on histone modification dynamics at the viral chromatin. The changes in H3 tail acetylation and H3 K9 methylation proceeded in a DNA replication-independent fashion. In contrast, the increase in H3 K4 methylation proved to depend widely on viral DNA synthesis. Consistently, labeling of nascent DNA using “click chemistry” revealed preferential incorporation of methylated H3 K4 into viral (but not cellular) chromatin during or following DNA replication. This study demonstrates largely selective epigenetic tagging of postreplicative human cytomegalovirus chromatin.

2004 ◽  
Vol 78 (19) ◽  
pp. 10360-10369 ◽  
Author(s):  
Yiyang Xu ◽  
Sylvia A. Cei ◽  
Alicia Rodriguez Huete ◽  
Gregory S. Pari

ABSTRACT Human cytomegalovirus (HCMV) UL84 is required for oriLyt-dependent DNA replication, and evidence from transient transfection assays suggests that UL84 directly participates in DNA synthesis. In addition, because of its apparent interaction with IE2, UL84 is implicated as a possible regulatory protein. To address the role of UL84 in the context of the viral genome, we generated a recombinant HCMV bacterial artificial chromosome (BAC) construct that did not express the UL84 gene product. This construct, BAC-IN84/Ep, displayed a null phenotype in that it failed to produce infectious virus after transfection into human fibroblast cells, whereas a revertant virus readily produced viral plaques and, subsequently, infectious virus. Real-time quantitative PCR showed that BAC-IN84/Ep was defective for DNA synthesis in that no increase in the accumulation of viral DNA was observed in transfected cells. We were unable to complement BAC-IN84/Ep in trans; however, oriLyt-dependent DNA replication was observed by the cotransfection of UL84 and BAC-IN84/Ep. An analysis of viral mRNA by real-time PCR indicated that, even in the absence of DNA synthesis, all representative kinetic classes of genes were expressed in cells transfected with BAC-IN84/Ep. The detection of UL44 and IE2 by immunofluorescence in BAC-IN84/Ep-transfected cells showed that these proteins failed to partition into replication compartments, indicating that UL84 expression is essential for the formation of these proteins into replication centers within the context of the viral genome. These results show that UL84 provides an essential DNA replication function and influences the subcellular localization of other viral proteins.


2009 ◽  
Vol 84 (6) ◽  
pp. 3079-3093 ◽  
Author(s):  
Karen Tran ◽  
Jeffrey A. Mahr ◽  
Deborah H. Spector

ABSTRACT We have continued studies to further understand the role of the ubiquitin-proteasome system (UPS) in human cytomegalovirus (HCMV) infection. With specific inhibitors of the proteasome, we show that ongoing proteasome activity is necessary for facilitating the various stages of the infection. Immediate-early protein 2 expression is modestly reduced with addition of proteasome inhibitors at the onset of infection; however, both early and late gene expression are significantly delayed, even if the inhibitor is removed at 12 h postinfection. Adding the inhibitor at later times during the infection blocks the further accumulation of viral early and late gene products, the severity of which is dependent on when the proteasome is inhibited. This can be attributed primarily to a block in viral RNA transcription, although DNA synthesis is also partially inhibited. Proteasome activity and expression increase as the infection progresses, and this coincides with the relocalization of active proteasomes to the periphery of the viral DNA replication center, where there is active RNA transcription. Interestingly, one 19S subunit, Rpn2, is specifically recruited into the viral DNA replication center. The relocalization of the subunits requires viral DNA replication, but their maintenance around or within the replication center is not dependent on continued viral DNA synthesis or the proteolytic activity of the proteasome. These studies highlight the importance of the UPS at all stages of the HCMV infection and support further studies into this pathway as a potential antiviral target.


2003 ◽  
Vol 84 (3) ◽  
pp. 639-645 ◽  
Author(s):  
Victoria Ellsmore ◽  
G. Gordon Reid ◽  
Nigel D. Stow

Human cytomegalovirus (HCMV) displays an exceptionally restricted host range in tissue culture with human fibroblasts being the principal fully permissive system. Nevertheless, immediate early (IE) proteins are expressed following infection of many non-permissive cell types of human, simian and murine origin, and viral origin-dependent DNA synthesis has been reconstituted by transfection of plasmids into Vero cells, a non-permissive line from African green monkey. We have examined the accumulation of HCMV strain AD169 DNA, and the replication of transfected HCMV origin-containing plasmids, in infected Vero and human embryonic kidney 293 cells, which were previously reported to express the major IE protein in a small proportion of infected cells but to be non-permissive for viral DNA synthesis. In Vero cells accumulation of origin-containing plasmid but not viral DNA occurred, whilst in 293 cells both DNAs accumulated. Immunofluorescence experiments indicated that following infection with 3 p.f.u. per cell, a small fraction of both cell types expressed the UL44 DNA replication protein. Neither cell line, however, supported the generation of infectious progeny virus. These results suggest that IE proteins expressed in Vero and 293 cells can induce the synthesis of early proteins capable of functioning in viral DNA replication, but there is a failure in later events on the pathway to infectious virus production. This provides further support for transfected Vero cells being a valid system in which to study HCMV DNA synthesis, and suggests that 293 cells may also prove useful in similar experiments.


1997 ◽  
Vol 41 (12) ◽  
pp. 2680-2685 ◽  
Author(s):  
D J Tenney ◽  
G Yamanaka ◽  
S M Voss ◽  
C W Cianci ◽  
A V Tuomari ◽  
...  

Lobucavir (LBV) is a deoxyguanine nucleoside analog with broad-spectrum antiviral activity. LBV was previously shown to inhibit herpes simplex virus (HSV) DNA polymerase after phosphorylation by the HSV thymidine kinase. Here we determined the mechanism of action of LBV against human cytomegalovirus (HCMV). LBV inhibited HCMV DNA synthesis to a degree comparable to that of ganciclovir (GCV), a drug known to target the viral DNA polymerase. The expression of late proteins and RNA, dependent on viral DNA synthesis, was also inhibited by LBV. Immediate-early and early HCMV gene expression was unaffected, suggesting that LBV acts temporally coincident with HCMV DNA synthesis and not through cytotoxicity. In vitro, the triphosphate of LBV was a potent inhibitor of HCMV DNA polymerase with a Ki of 5 nM. LBV was phosphorylated to its triphosphate form intracellularly in both infected and uninfected cells, with phosphorylated metabolite levels two- to threefold higher in infected cells. GCV-resistant HCMV isolates, with deficient GCV phosphorylation due to mutations in the UL97 protein kinase, remained sensitive to LBV. Overall, these results suggest that LBV-triphosphate halts HCMV DNA replication by inhibiting the viral DNA polymerase and that LBV phosphorylation can occur in the absence of viral factors including the UL97 protein kinase. Furthermore, LBV may be effective in the treatment of GCV-resistant HCMV.


2009 ◽  
Vol 84 (4) ◽  
pp. 1771-1784 ◽  
Author(s):  
Blair L. Strang ◽  
Steeve Boulant ◽  
Donald M. Coen

ABSTRACT In the eukaryotic cell, DNA replication entails the interaction of multiple proteins with the DNA polymerase processivity factor PCNA. As the structure of the presumptive human cytomegalovirus (HCMV) DNA polymerase processivity factor UL44 is highly homologous to that of PCNA, we hypothesized that UL44 also interacts with numerous proteins. To investigate this possibility, recombinant HCMV expressing FLAG-tagged UL44 was generated and used to immunoprecipitate UL44 and associated proteins from infected cell lysates. Unexpectedly, nucleolin, a major protein component of the nucleolus, was identified among these proteins by mass spectrometry and Western blotting. The association of nucleolin and UL44 in infected cell lysate was confirmed by reciprocal coimmunoprecipitation in the presence and absence of nuclease. Western blotting and immunofluorescence assays demonstrated that the level of nucleolin increases during infection and that nucleolin becomes distributed throughout the nucleus. Furthermore, the colocalization of nucleolin and UL44 in infected cell nuclei was observed by immunofluorescence assays. Assays of HCMV-infected cells treated with small interfering RNA (siRNA) targeting nucleolin mRNA indicated that nucleolin was required for efficient virus production, viral DNA synthesis, and the expression of a late viral protein, with a correlation between the efficacy of knockdown and the effect on virus replication. In contrast, the level of neither global protein synthesis nor the replication of an unrelated virus (reovirus) was reduced in siRNA-treated cells. Taken together, our results indicate an association of nucleolin and UL44 in HCMV-infected cells and a role for nucleolin in viral DNA synthesis.


mBio ◽  
2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Blair L. Strang ◽  
Steeve Boulant ◽  
Tomas Kirchhausen ◽  
Donald M. Coen

ABSTRACTDrastic reorganization of the nucleus is a hallmark of herpesvirus replication. This reorganization includes the formation of viral replication compartments, the subnuclear structures in which the viral DNA genome is replicated. The architecture of replication compartments is poorly understood. However, recent work with human cytomegalovirus (HCMV) showed that the viral DNA polymerase subunit UL44 concentrates and viral DNA synthesis occurs at the periphery of these compartments. Any cellular factors involved in replication compartment architecture are largely unknown. Previously, we found that nucleolin, a major protein component of nucleoli, associates with HCMV UL44 in infected cells and is required for efficient viral DNA synthesis. Here, we show that nucleolin binds to purified UL44. Confocal immunofluorescence analysis demonstrated colocalization of nucleolin with UL44 at the periphery of replication compartments. Pharmacological inhibition of viral DNA synthesis prevented the formation of replication compartments but did not abrogate association of UL44 and nucleolin. Thus, association of UL44 and nucleolin is unlikely to be a nonspecific effect related to development of replication compartments. No detectable colocalization of 5-ethynyl-2′-deoxyuridine (EdU)-labeled viral DNA with nucleolin was observed, suggesting that nucleolin is not directly involved in viral DNA synthesis. Small interfering RNA (siRNA)-mediated knockdown of nucleolin caused improper localization of UL44 and a defect in EdU incorporation into viral DNA. We propose a model in which nucleolin anchors UL44 at the periphery of replication compartments to maintain their architecture and promote viral DNA synthesis.IMPORTANCEHuman cytomegalovirus (HCMV) is an important human pathogen. HCMV infection causes considerable rearrangement of the structure of the nucleus, largely due to the formation of viral replication compartments within the nucleus. Within these compartments, the virus replicates its DNA genome. We previously demonstrated that nucleolin is required for efficient viral DNA synthesis and now find that the nucleolar protein nucleolin interacts with a subunit of the viral DNA polymerase, UL44, specifically at the periphery of replication compartments. Moreover, we find that nucleolin is required to properly localize UL44 at this region. Nucleolin is, therefore, involved in the organization of proteins within replication compartments. This, to our knowledge, is the first report identifying a cellular protein required for maintaining replication compartment architecture.


2005 ◽  
Vol 79 (17) ◽  
pp. 11115-11127 ◽  
Author(s):  
Michael A. McVoy ◽  
Daniel E. Nixon

ABSTRACT Herpesvirus genome maturation is a complex process in which concatemeric DNA molecules are translocated into capsids and cleaved at specific sequences to produce encapsidated-unit genomes. Bacteriophage studies further suggest that important ancillary processes, such as RNA transcription and DNA synthesis, concerned with repeat duplication, recombination, branch resolution, or damage repair may also be involved with the genome maturation process. To gain insight into the biochemical activities needed for herpesvirus genome maturation, 2-bromo-5,6-dichloro-1-β-d-ribofuranosyl benzimidazole riboside (BDCRB) was used to allow the accumulation of human cytomegalovirus concatemeric DNA while the formation of new genomes was being blocked. Genome formation was restored upon BDCRB removal, and addition of various inhibitors during this time window permitted evaluation of their effects on genome maturation. Inhibitors of protein synthesis, RNA transcription, and the viral DNA polymerase only modestly reduced genome formation, demonstrating that these activities are not required for genome maturation. In contrast, drugs that inhibit both viral and host DNA polymerases potently blocked genome formation. Radioisotope incorporation in the presence of a viral DNA polymerase inhibitor further suggested that significant host-mediated DNA synthesis occurs throughout the viral genome. These results indicate a role for host DNA polymerases in genome maturation and are consistent with a need for terminal repeat duplication, debranching, or damage repair concomitant with DNA packaging or cleavage. Similarities to previously reported effects of BDCRB on guinea pig cytomegalovirus were also noted; however, BDCRB induced low-level formation of a supergenomic species called monomer+ DNA that is unique to human cytomegalovirus. Analysis of monomer+ DNA suggested a model for its formation in which BDCRB permits limited packaging of concatemeric DNA but induces skipping of cleavage sites.


2017 ◽  
Vol 91 (17) ◽  
Author(s):  
Tim Schommartz ◽  
Jiajia Tang ◽  
Rebekka Brost ◽  
Wolfram Brune

ABSTRACT The UL112-113 gene is one of the few alternatively spliced genes of human cytomegalovirus (HCMV). It codes for four phosphoproteins, p34, p43, p50, and p84, all of which are expressed with early kinetics and accumulate at sites of viral DNA replication within the host cell nucleus. Although these proteins are known to play important, possibly essential, roles in the viral replication cycle, little is known about the contribution of individual UL112-113 protein products. Here we used splice site mutagenesis, intron deletion and substitution, and nonsense mutagenesis to prevent the individual expression of each UL112-113 protein isoform and to investigate the importance of each isoform for viral replication. We show that HCMV mutants lacking p34 or p50 expression replicated to high titers in human fibroblasts and endothelial cells, indicating that these proteins are nonessential for viral replication, while mutant viruses carrying a stop mutation within the p84 coding sequence were severely growth impaired. Viral replication could not be detected upon the inactivation of p43 expression, indicating that this UL112-113 protein is essential for viral replication. We also analyzed the ability of UL112-113 proteins to recruit other viral proteins to intranuclear prereplication compartments. While UL112-113 expression was sufficient to recruit the UL44-encoded viral DNA polymerase processivity factor, it was not sufficient for the recruitment of the viral UL84 and UL117 proteins. Remarkably, both the p43 and p84 isoforms were required for the efficient recruitment of pUL44, which is consistent with their critical role in the viral life cycle. IMPORTANCE Human cytomegalovirus requires gene products from 11 genetic loci for the lytic replication of its genome. One of these loci, UL112-113, encodes four proteins with common N termini by alternative splicing. In this study, we inactivated the expression of each of the four UL112-113 proteins individually and determined their requirement for HCMV replication. We found that two of the UL112-113 gene products were dispensable for viral replication in human fibroblasts and endothelial cells. In contrast, viral replication was severely reduced or absent when one of the other two gene products was inactivated, indicating that they are of crucial importance for the viral replication cycle. We further showed that the latter two gene products are involved in the recruitment of pUL44, an essential cofactor of the viral DNA polymerase, to specific sites within the cell nucleus that are thought to serve as starting points for viral DNA replication.


Sign in / Sign up

Export Citation Format

Share Document