Faculty Opinions recommendation of Developing a molecular dynamics force field for both folded and disordered protein states.

Author(s):  
Francesco Gervasio
2018 ◽  
Vol 115 (21) ◽  
pp. E4758-E4766 ◽  
Author(s):  
Paul Robustelli ◽  
Stefano Piana ◽  
David E. Shaw

Molecular dynamics (MD) simulation is a valuable tool for characterizing the structural dynamics of folded proteins and should be similarly applicable to disordered proteins and proteins with both folded and disordered regions. It has been unclear, however, whether any physical model (force field) used in MD simulations accurately describes both folded and disordered proteins. Here, we select a benchmark set of 21 systems, including folded and disordered proteins, simulate these systems with six state-of-the-art force fields, and compare the results to over 9,000 available experimental data points. We find that none of the tested force fields simultaneously provided accurate descriptions of folded proteins, of the dimensions of disordered proteins, and of the secondary structure propensities of disordered proteins. Guided by simulation results on a subset of our benchmark, however, we modified parameters of one force field, achieving excellent agreement with experiment for disordered proteins, while maintaining state-of-the-art accuracy for folded proteins. The resulting force field, a99SB-disp, should thus greatly expand the range of biological systems amenable to MD simulation. A similar approach could be taken to improve other force fields.


2013 ◽  
Vol 11 (4) ◽  
pp. 371-383 ◽  
Author(s):  
Yong-Lei Wang ◽  
Rochelle S. Lawrence ◽  
Zhong-Yuan Lu ◽  
Aatto Laaksonen

RSC Advances ◽  
2014 ◽  
Vol 4 (89) ◽  
pp. 48621-48631 ◽  
Author(s):  
Eleanor R. Turpin ◽  
Sam Mulholland ◽  
Andrew M. Teale ◽  
Boyan B. Bonev ◽  
Jonathan D. Hirst

2013 ◽  
Vol 34 (13) ◽  
pp. 1136-1142 ◽  
Author(s):  
Xue X. Yao ◽  
Chang G. Ji ◽  
Dai Q. Xie ◽  
John Z.H. Zhang

2005 ◽  
Vol 109 (14) ◽  
pp. 6705-6713 ◽  
Author(s):  
Sergei Yu. Noskov ◽  
Guillaume Lamoureux ◽  
Benoît Roux

Sign in / Sign up

Export Citation Format

Share Document