A Molecular Dynamics Study of the Role of Adatoms in SAMs of Methylthiolate on Au(111): A New Force Field Parameterized from Ab Initio Calculations

2012 ◽  
Vol 116 (28) ◽  
pp. 14883-14891 ◽  
Author(s):  
Gabriel S. Longo ◽  
Somesh Kr. Bhattacharya ◽  
Sandro Scandolo
1997 ◽  
Vol 90 (3) ◽  
pp. 495-497
Author(s):  
CLAUDIO ESPOSTI ◽  
FILIPPO TAMASSIA ◽  
CRISTINA PUZZARINI ◽  
RICCARDO TARRONI ◽  
ZDENEK ZELINGER

Author(s):  
Jay Krishan Dora ◽  
Charchit Saraswat ◽  
Ashish Gour ◽  
Sudipto Ghosh ◽  
Natraj Yedla ◽  
...  

2004 ◽  
Vol 120 (15) ◽  
pp. 7059-7066 ◽  
Author(s):  
Richard H. Gee ◽  
Szczepan Roszak ◽  
Krishnan Balasubramanian ◽  
Laurence E. Fried

2014 ◽  
Vol 23 (09) ◽  
pp. 1430015 ◽  
Author(s):  
Peter U. Sauer

In this paper, the role of three-nucleon forces in ab initio calculations of nuclear systems is investigated. The difference between genuine and induced many-nucleon forces is emphasized. Induced forces arise in the process of solving the nuclear many-body problem as technical intermediaries toward calculationally converged results. Genuine forces make up the Hamiltonian. They represent the chosen underlying dynamics. The hierarchy of contributions arising from genuine two-, three- and many-nucleon forces is discussed. Signals for the need of the inclusion of genuine three-nucleon forces are studied in nuclear systems, technically best under control, especially in three-nucleon and four-nucleon systems. Genuine three-nucleon forces are important for details in the description of some observables. Their contributions to observables are small on the scale set by two-nucleon forces.


Sign in / Sign up

Export Citation Format

Share Document