Faculty Opinions recommendation of Neuropathy following spinal nerve injury shares features with the irritable nociceptor phenotype: A back-translational study of oxcarbazepine.

Author(s):  
Luis Villanueva ◽  
Rodrigo Noseda
2018 ◽  
Vol 23 (1) ◽  
pp. 183-197 ◽  
Author(s):  
Ryan Patel ◽  
Mateusz Kucharczyk ◽  
Carlota Montagut-Bordas ◽  
Stevie Lockwood ◽  
Anthony H. Dickenson

2005 ◽  
Vol 30 (4) ◽  
pp. 351-355 ◽  
Author(s):  
Masahiro Takahashi ◽  
Masahiko Kawaguchi ◽  
Keiji Shimada ◽  
Toshikatsu Nakashima ◽  
Hitoshi Furuya

2007 ◽  
Vol 106 (6) ◽  
pp. 1213-1219 ◽  
Author(s):  
Ken-ichiro Hayashida ◽  
Renée Parker ◽  
James C. Eisenach

Background Gabapentin administration into the brain of mice reduces nerve injury-induced hypersensitivity and is blocked by intrathecal atropine and enhanced by intrathecal neostigmine. The authors tested the relevance of these findings to oral therapy by examining the efficacy of oral gabapentin to reduce hypersensitivity after nerve injury in rats and its interaction with the clinically used cholinesterase inhibitor, donepezil. Methods Male rats with hypersensitivity after spinal nerve ligation received gabapentin orally, intrathecally, and intracerebroventricularly with or without intrathecal atropine, and withdrawal threshold to paw pressure was determined. The effects of oral gabapentin and donepezil alone and in combination on withdrawal threshold were determined in an isobolographic design. Results Gabapentin reduced hypersensitivity to paw pressure by all routes of administration, and was more potent and with a quicker onset after intracerebroventricular than intrathecal injection. Intrathecal atropine reversed the effect of intracerebroventricular and oral gabapentin. Oral gabapentin and donepezil interacted in a strongly synergistic manner, with an observed efficacy at one tenth the predicted dose of an additive interaction. The gabapentin-donepezil combination was reversed by intrathecal atropine. Conclusions Although gabapentin may relieve neuropathic pain by actions at many sites, these results suggest that its actions in the brain to cause spinal cholinergic activation predominate after oral administration. Side effects, particularly nausea, cannot be accurately determined on rats. Nevertheless, oral donepezil is well tolerated by patients in the treatment of Alzheimer dementia, and the current study provides the rationale for clinical study of combination of gabapentin and donepezil to treat neuropathic pain.


2007 ◽  
Vol 206 (2) ◽  
pp. 220-230 ◽  
Author(s):  
Anne Minert ◽  
Eran Gabay ◽  
Cecilia Dominguez ◽  
Zsuzsanna Wiesenfeld-Hallin ◽  
Marshall Devor

Pain ◽  
2008 ◽  
Vol 138 (2) ◽  
pp. 318-329 ◽  
Author(s):  
Yun Guan ◽  
Lisa M. Johanek ◽  
Timothy V. Hartke ◽  
Beom Shim ◽  
Yuan-Xiang Tao ◽  
...  

Pain ◽  
2000 ◽  
Vol 85 (3) ◽  
pp. 503-521 ◽  
Author(s):  
Chang-Ning Liu ◽  
Patrick D. Wall ◽  
Efrat Ben-Dor ◽  
Martin Michaelis ◽  
Ron Amir ◽  
...  

2016 ◽  
Vol 125 (4) ◽  
pp. 765-778 ◽  
Author(s):  
Jun Zhang ◽  
Lingli Liang ◽  
Xuerong Miao ◽  
Shaogen Wu ◽  
Jing Cao ◽  
...  

Abstract Background Peripheral nerve injury–induced gene alterations in the dorsal root ganglion (DRG) and spinal cord likely participate in neuropathic pain genesis. Histone methylation gates gene expression. Whether the suppressor of variegation 3-9 homolog 1 (SUV39H1), a histone methyltransferase, contributes to nerve injury–induced nociceptive hypersensitivity is unknown. Methods Quantitative real-time reverse transcription polymerase chain reaction analysis, Western blot analysis, or immunohistochemistry were carried out to examine the expression of SUV39H1 mRNA and protein in rat DRG and dorsal horn and its colocalization with DRG μ-opioid receptor (MOR). The effects of a SUV39H1 inhibitor (chaetocin) or SUV39H1 siRNA on fifth lumbar spinal nerve ligation (SNL)–induced DRG MOR down-regulation and nociceptive hypersensitivity were examined. Results SUV39H1 was detected in neuronal nuclei of the DRG and dorsal horn. It was distributed predominantly in small DRG neurons, in which it coexpressed with MOR. The level of SUV39H1 protein in both injured DRG and ipsilateral fifth lumbar dorsal horn was time dependently increased after SNL. SNL also produced an increase in the amount of SUV39H1 mRNA in the injured DRG (n = 6/time point). Intrathecal chaetocin or SUV39H1 siRNA as well as DRG or intraspinal microinjection of SUV39H1 siRNA impaired SNL-induced allodynia and hyperalgesia (n = 5/group/treatment). DRG microinjection of SUV39H1 siRNA also restored SNL-induced DRG MOR down-regulation (n = 6/group). Conclusions The findings of this study suggest that SUV39H1 contributes to nerve injury–induced allodynia and hyperalgesia through gating MOR expression in the injured DRG. SUV39H1 may be a potential target for the therapeutic treatment of nerve injury–induced nociceptive hypersensitivity.


Pain ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 139-147 ◽  
Author(s):  
Michael P Hefferan ◽  
Pamela Carter ◽  
Melissa Haley ◽  
Christopher W Loomis

2006 ◽  
Vol 104 (2) ◽  
pp. 344-350 ◽  
Author(s):  
Douglas G. Ririe ◽  
James C. Eisenach

Background Developmental differences in responses to acute and chronic nerve injury have received minimal attention. This study examines developmental differences in behavioral responses to a proximal (closer to the spinal cord) (L5 and L6 spinal nerve root ligation) or to a more distal (closer to peripheral innervation) (partial sciatic nerve ligation) nerve injury in rats paralleling the infant to young adult human. Methods Withdrawal thresholds to von Frey filament testing in the hind paw were determined before and various times after either spinal nerve root ligation or partial sciatic nerve ligation in rats aged 2, 4, and 16 weeks. Control rats of these ages were observed serially without surgery. Times for withdrawal thresholds to mechanical stimuli to return to 80% of that of the hind paw in the control animals were compared among the different ages in the two models. Results Baseline withdrawal thresholds in younger rats were lower (P < 0.05). In the 2-week-old animals, distal injury partial sciatic nerve ligation did not cause a reduction in withdrawal threshold from baseline. This was different from the spinal nerve root ligation group and the older animals in the partial sciatic nerve ligation group. However, when compared with age-matched control animals, both nerve injuries resulted in reduced withdrawal thresholds (P < 0.05). The resolution of hypersensitivity to mechanical stimulation, as measured by return of threshold to 80% of controls, occurred more quickly in 2-week-old than in 4- and 16-week-old animals in both injury models (P < 0.05). Conclusion These data suggest that resolution of sensitization to A-fiber input occurs more rapidly in young animals. In addition, distal injury has less of a sensitizing effect on A-fiber input than proximal injury in the younger animals. The authors speculate that neuroimmune responses, especially at the site of injury, are developmentally regulated and less likely to produce chronic pain when injury occurs at a young age.


1948 ◽  
Vol 5 (5) ◽  
pp. 413-432 ◽  
Author(s):  
K. Lindblom ◽  
Bror Rexed
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document