Faculty Opinions recommendation of Heart regeneration in the mexican cavefish.

Author(s):  
Malcolm Maden
Keyword(s):  
2010 ◽  
Vol 10 (3) ◽  
pp. 173-185 ◽  
Author(s):  
L. Ferreira ◽  
D. C.S. Pedroso ◽  
H. Vazao ◽  
R. S.M. Gomes
Keyword(s):  

2021 ◽  
Vol 2 (3) ◽  
pp. 100623
Author(s):  
Yanli Zhao ◽  
Rong Chang ◽  
Changchun Zeng

2019 ◽  
Vol 6 (2) ◽  
pp. 16 ◽  
Author(s):  
Suneeta Narumanchi ◽  
Karri Kalervo ◽  
Sanni Perttunen ◽  
Hong Wang ◽  
Katariina Immonen ◽  
...  

The let-7c family of micro-RNAs (miRNAs) is expressed during embryonic development and plays an important role in cell differentiation. We have investigated the role of let-7c in heart regeneration after injury in adult zebrafish. let-7c antagomir or scramble injections were given at one day after cryoinjury (1 dpi). Tissue samples were collected at 7 dpi, 14 dpi and 28 dpi and cardiac function was assessed before cryoinjury, 1 dpi, 7 dpi, 14 dpi and 28 dpi. Inhibition of let-7c increased the rate of fibrinolysis, increased the number of proliferating cell nuclear antigen (PCNA) positive cardiomyocytes at 7 dpi and increased the expression of the epicardial marker raldh2 at 7 dpi. Additionally, cardiac function measured with echocardiography recovered slightly more rapidly after inhibition of let-7c. These results reveal a beneficial role of let-7c inhibition in adult zebrafish heart regeneration.


2020 ◽  
Vol 140 ◽  
pp. 30
Author(s):  
Nicola Pianca ◽  
Francesca Pontis ◽  
Alla Aharonov ◽  
Chiara Bongiovanni ◽  
Martina Mazzeschi ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 548 ◽  
Author(s):  
Helene Juul Belling ◽  
Wolfgang Hofmeister ◽  
Ditte Caroline Andersen

Myocardial infarction (MI) is a worldwide condition that affects millions of people. This is mainly caused by the adult human heart lacking the ability to regenerate upon injury, whereas zebrafish have the capacity through cardiomyocyte proliferation to fully regenerate the heart following injury such as apex resection (AR). But a systematic overview of the methods used to evidence heart regrowth and regeneration in the zebrafish is lacking. Herein, we conducted a systematical search in Embase and Pubmed for studies on heart regeneration in the zebrafish following injury and identified 47 AR studies meeting the inclusion criteria. Overall, three different methods were used to assess heart regeneration in zebrafish AR hearts. 45 out of 47 studies performed qualitative (37) and quantitative (8) histology, whereas immunohistochemistry for various cell cycle markers combined with cardiomyocyte specific proteins was used in 34 out of 47 studies to determine cardiomyocyte proliferation qualitatively (6 studies) or quantitatively (28 studies). For both methods, analysis was based on selected heart sections and not the whole heart, which may bias interpretations. Likewise, interstudy comparison of reported cardiomyocyte proliferation indexes seems complicated by distinct study designs and reporting manners. Finally, six studies performed functional analysis to determine heart function, a hallmark of human heart injury after MI. In conclusion, our data implies that future studies should consider more quantitative methods eventually taking the 3D of the zebrafish heart into consideration when evidencing myocardial regrowth after AR. Furthermore, standardized guidelines for reporting cardiomyocyte proliferation and sham surgery details may be considered to enable inter study comparisons and robustly determine the effect of given genes on the process of heart regeneration.


Sign in / Sign up

Export Citation Format

Share Document