heart repair
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 67)

H-INDEX

24
(FIVE YEARS 6)

Author(s):  
Tong Duy Phuc ◽  
Nguyen Sinh Hien ◽  
Nguyen Dang Hung ◽  
Vuong Hoang Dung

Abstract: Congenital airway stenosis (tracheobronchial stenosis) in children is rare, difficult to treat and become more complex when associated with congenital heart defects. In severe airway stenosis, slide tracheobronchoplasty is the most optimal strategy to manage this condition, yet really challenging. We report case series with this combined condition of airway stenosis and congenital heart diseases, which were successfully treated by slide tracheobronchoplasty with concomitant heart repair. We also discuss about the indication, surgical technique as well as postoperative care.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ienglam Lei ◽  
Shuo Tian ◽  
Wenbin Gao ◽  
Liu Liu ◽  
Yijing Guo ◽  
...  

Myocardial infarction (MI) is accompanied by severe energy deprivation and extensive epigenetic changes. However, how energy metabolism and chromatin modifications are interlinked during MI and heart repair has been poorly explored. Here, we examined the effect of different carbon sources that are involved in the major metabolic pathways of acetyl-CoA synthesis on myocardial infarction and found that elevation of acetyl-CoA by sodium octanoate (8C) significantly improved heart function in ischemia reperfusion (I/R) rats. Mechanistically, 8C reduced I/R injury by promoting histone acetylation which in turn activated the expression of antioxidant genes and inhibited cardiomyocyte (CM) apoptosis. Furthermore, we elucidated that 8C-promoted histone acetylation and heart repair were carried out by metabolic enzyme medium-chain acyl-CoA dehydrogenase (MCAD) and histone acetyltransferase Kat2a, suggesting that 8C dramatically improves cardiac function mainly through metabolic acetyl-CoA-mediated histone acetylation. Therefore, our study uncovers an interlinked metabolic/epigenetic network comprising 8C, acetyl-CoA, MCAD, and Kat2a to combat heart injury.


2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Adwiteeya Misra ◽  
Cameron D. Baker ◽  
Elizabeth M. Pritchett ◽  
Kimberly N. Burgos Villar ◽  
John M. Ashton ◽  
...  

The neonatal mammalian heart exhibits a remarkable regenerative potential, which includes fibrotic scar resolution and the generation of new cardiomyocytes. To investigate the mechanisms facilitating heart repair after apical resection in neonatal mice, we conducted bulk and spatial transcriptomic analyses at regenerative and non-regenerative timepoints. Importantly, spatial transcriptomics provided near single-cell resolution, revealing distinct domains of atrial and ventricular myocardium that exhibit dynamic phenotypic alterations during postnatal heart maturation. Spatial transcriptomics also defined the cardiac scar, which transitions from a proliferative to secretory phenotype as the heart loses regenerative potential. The resolving scar is characterized by spatially and temporally restricted programs of inflammation, epicardium expansion and extracellular matrix production, metabolic reprogramming, lipogenic scar extrusion, and cardiomyocyte restoration. Finally, this study revealed the emergence of a regenerative border zone defined by immature cardiomyocyte markers and the robust expression of Sprr1a. Taken together, our study defines the spatially and temporally restricted gene programs that underlie neonatal heart regeneration and provides insight into cardio-restorative mechanisms supporting scar resolution.


2021 ◽  
Vol 8 (12) ◽  
pp. 172
Author(s):  
Olga Brazhkina ◽  
Jeong Hun Park ◽  
Hyun-Ji Park ◽  
Sruti Bheri ◽  
Joshua T. Maxwell ◽  
...  

Myocardial infarction is one of the largest contributors to cardiovascular disease and reduces the ability of the heart to pump blood. One promising therapeutic approach to address the diminished function is the use of cardiac patches composed of biomaterial substrates and cardiac cells. These patches can be enhanced with the application of an auxetic design, which has a negative Poisson’s ratio and can be modified to suit the mechanics of the infarct and surrounding cardiac tissue. Here, we examined multiple auxetic models (orthogonal missing rib and re-entrant honeycomb in two orientations) with tunable mechanical properties as a cardiac patch substrate. Further, we demonstrated that 3D printing based auxetic cardiac patches of varying thicknesses (0.2, 0.4, and 0.6 mm) composed of polycaprolactone and gelatin methacrylate can support induced pluripotent stem cell-derived cardiomyocyte function for 14-day culture. Taken together, this work shows the potential of cellularized auxetic cardiac patches as a suitable tissue engineering approach to treating cardiovascular disease.


2021 ◽  
pp. S13-S20
Author(s):  
B. Šalingová ◽  
Z. Červenák ◽  
A. Adamičková ◽  
N. Chomanicová ◽  
S. Valášková ◽  
...  

Heart remodeling occurs as a compensation mechanism for the massive loss of tissue during initial heart failure and the consequent inflammation process. During heart remodeling fibroblasts differentiate to myofibroblasts activate their secretion functions and produce elevated amounts, of extracellular matrix (ECM) proteins, mostly collagen, that form scar tissue and alter the normal degradation of ECM. Scar formation does replace the damaged tissue structurally; however, it impedes the normal contractive function of cardiomyocytes (CMs) and results in long-lasting effects after heart failure. Besides CMs and cardiac fibroblasts, endothelial cells (ECs) and circulating endothelial progenitor cells (cEPCs) contribute to heart repair. This review summarizes the current knowledge of EC-CM crosstalk in cardiac fibrosis (CF), the role of cEPCs in heart regeneration and the contribution of Endothelial-mesenchymal transition (EndoMT).


Author(s):  
Shen Li ◽  
Tomohiro Yokota ◽  
Ping Wang ◽  
Johanna ten Hoeve ◽  
Feiyang Ma ◽  
...  

2021 ◽  
Vol 26 (10) ◽  
pp. 4749
Author(s):  
P. M. Dokshin ◽  
A. B. Malashicheva

The search and study of endogenous heart repair remains an urgent issue in modern regenerative medicine. It is generally accepted that the human heart has a limited regenerative potential, but recent studies show that functionally significant regeneration is possible. However, the mechanisms underlying these processes remain poorly understood. In the heart, there are populations of resident mesenchymal cells that have some properties of stem cells that carry certain markers, such as c-kit+, Sca-1, etc. The ability of these cells to differentiate directly into cardiomyocytes remains controversial, but their use in clinical trials has shown improved cardiac function in patients with myocardial infarction. Currently, approaches are being developed to use, mainly, induced pluripotent stem cells as a promising regenerative therapy, but the cardioprotective role of cardiac mesenchymal cells remains the subject of active study due to their paracrine signaling.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Tim Koopmans ◽  
Henriette van Beijnum ◽  
Elke F. Roovers ◽  
Antonio Tomasso ◽  
Divyanshu Malhotra ◽  
...  

AbstractIschemic heart disease and by extension myocardial infarction is the primary cause of death worldwide, warranting regenerative therapies to restore heart function. Current models of natural heart regeneration are restricted in that they are not of adult mammalian origin, precluding the study of class-specific traits that have emerged throughout evolution, and reducing translatability of research findings to humans. Here, we present the spiny mouse (Acomys spp.), a murid rodent that exhibits bona fide regeneration of the back skin and ear pinna, as a model to study heart repair. By comparing them to ordinary mice (Mus musculus), we show that the acute injury response in spiny mice is similar, but with an associated tolerance to infarction through superior survivability, improved ventricular conduction, and near-absence of pathological remodeling. Critically, spiny mice display increased vascularization, altered scar organization, and a more immature phenotype of cardiomyocytes, with a corresponding improvement in heart function. These findings present new avenues for mammalian heart research by leveraging unique tissue properties of the spiny mouse.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenling Yang ◽  
Jibin Lin ◽  
Jin Zhou ◽  
Yuqi Zheng ◽  
Shijiu Jiang ◽  
...  

Myocardial infarction results from obstruction of a coronary artery that causes insufficient blood supply to the myocardium and leads to ischemic necrosis. It is one of the most common diseases threatening human health and is characterized by high morbidity and mortality. Atherosclerosis is the pathological basis of myocardial infarction, and its pathogenesis has not been fully elucidated. Innate lymphoid cells (ILCs) are an important part of the human immune system and participate in many processes, including inflammation, metabolism and tissue remodeling, and play an important role in atherosclerosis. However, their specific roles in myocardial infarction are unclear. This review describes the current understanding of the relationship between innate lymphoid cells and myocardial infarction during the acute phase of myocardial infarction, myocardial ischemia-reperfusion injury, and heart repair and regeneration following myocardial infarction. We suggest that this review may provide new potential intervention targets and ideas for treatment and prevention of myocardial infarction.


Sign in / Sign up

Export Citation Format

Share Document