neuregulin 1
Recently Published Documents


TOTAL DOCUMENTS

947
(FIVE YEARS 147)

H-INDEX

79
(FIVE YEARS 5)

2022 ◽  
Vol 17 (6) ◽  
pp. 853-859
Author(s):  
K. A. Zhbanov ◽  
A. A. Shchendrygina ◽  
E. A. Zheleznykh ◽  
E. V. Privalova ◽  
A. Y. Suvorov ◽  
...  

Aim. To determine the median levels of neuregulin-1 (NRG-1; endothelium-derived growth factor and the natural agonist of the ERBB3 and ERBB4 receptors) NRG-1 in healthy volunteers and to study the associations of NRG-1 levels with gender and age.Material and Methods. Ninety seven healthy participants were enrolled (median age of 44 [32-54], men 45 men [46.4%]). The following age groups were identified: 20-29 y.о. (n=20, men – 50.0%),  30-39  y.о.  (n=21,  men  –  52.4%),  40-49  y.о.  (n=22,  men  –  45.5%),  50-59  y.о. (n=22, men – 36.4%); 60-69 y.о. (n=12, men – 50.0%). Peripheral blood samples were collected at the time of enrolment, standard laboratory tests were performed, and NRG-1 levels were determined in the plasma samples by ELISA.Results. In the cohort of 97 healthy participants the median value of NRG-1 was 0.3 [0.121-2.24] ng/ml. NRG-1 levels did not differ significantly between men and women (p=0.145), indicating that NRG-1 levels are not influenced by gender. The levels of NRG-1 were similar in the different age groups: age 20-29 years=0.26 [0.17-0.37] ng/ml; age 30-39=0.24 [0.1-0.39] ng/ml; age 40-49=0.31 [0.19-1.15] ng/ml; age 50-59=0.37  [0.19-1.0] ng/ml; age 60-69=0.4 [0.13-0.81] ng/ml. Correlation analysis between NRG-1 levels and route blood measurements (haemoglobin, lipids, glucose, creatinine, and uretic acid) did not show significant associations.Conclusions. In this study, the median value of NRG-1 plasma levels were determined. The results of the study show that age and gender had no influence on NRG-1 values.


Author(s):  
Philip Barrett ◽  
Tom J. Quick ◽  
Vivek Mudera ◽  
Darren J. Player

Muscle spindles are sensory organs that detect and mediate both static and dynamic muscle stretch and monitor muscle position, through a specialised cell population, termed intrafusal fibres. It is these fibres that provide a key contribution to proprioception and muscle spindle dysfunction is associated with multiple neuromuscular diseases, aging and nerve injuries. To date, there are few publications focussed on de novo generation and characterisation of intrafusal muscle fibres in vitro. To this end, current models of skeletal muscle focus on extrafusal fibres and lack an appreciation for the afferent functions of the muscle spindle. The goal of this study was to produce and define intrafusal bag and chain myotubes from differentiated C2C12 myoblasts, utilising the addition of the developmentally associated protein, Neuregulin 1 (Nrg-1). Intrafusal bag myotubes have a fusiform shape and were assigned using statistical morphological parameters. The model was further validated using immunofluorescent microscopy and western blot analysis, directed against an extensive list of putative intrafusal specific markers, as identified in vivo. The addition of Nrg-1 treatment resulted in a 5-fold increase in intrafusal bag myotubes (as assessed by morphology) and increased protein and gene expression of the intrafusal specific transcription factor, Egr3. Surprisingly, Nrg-1 treated myotubes had significantly reduced gene and protein expression of many intrafusal specific markers and showed no specificity towards intrafusal bag morphology. Another novel finding highlights a proliferative effect for Nrg-1 during the serum starvation-initiated differentiation phase, leading to increased nuclei counts, paired with less myotube area per myonuclei. Therefore, despite no clear collective evidence for specific intrafusal development, Nrg-1 treated myotubes share two inherent characteristics of intrafusal fibres, which contain increased satellite cell numbers and smaller myonuclear domains compared with their extrafusal neighbours. This research represents a minimalistic, monocellular C2C12 model for progression towards de novo intrafusal skeletal muscle generation, with the most extensive characterisation to date. Integration of intrafusal myotubes, characteristic of native, in vivo intrafusal skeletal muscle into future biomimetic tissue engineered models could provide platforms for developmental or disease state studies, pre-clinical screening, or clinical applications.


2021 ◽  
Vol 23 (1) ◽  
pp. 13
Author(s):  
Olaia Martínez-Iglesias ◽  
Vinogran Naidoo ◽  
Natalia Cacabelos ◽  
Ramón Cacabelos

Epigenetics is the study of heritable changes in gene expression that occur without alterations to the DNA sequence, linking the genome to its surroundings. The accumulation of epigenetic alterations over the lifespan may contribute to neurodegeneration. The aim of the present study was to identify epigenetic biomarkers for improving diagnostic efficacy in patients with neurodegenerative diseases. We analyzed global DNA methylation, chromatin remodeling/histone modifications, sirtuin (SIRT) expression and activity, and the expression of several important neurodegeneration-related genes. DNA methylation, SIRT expression and activity and neuregulin 1 (NRG1), microtubule-associated protein tau (MAPT) and brain-derived neurotrophic factor (BDNF) expression were reduced in buffy coat samples from patients with neurodegenerative disorders. Our data suggest that these epigenetic biomarkers may be useful in clinical practical for the diagnosis, surveillance, and prognosis of disease activity in patients with neurodegenerative diseases.


2021 ◽  
Author(s):  
Yuqi Ma ◽  
Peixia Fan ◽  
Rui Zhao ◽  
Yinghua Zhang ◽  
Xianwei Wang ◽  
...  

Abstract BackgroundThe inflammatory response caused by microglia in the central nervous system plays an important role in Alzheimer's disease. Neuregulin-1 (NRG1) is a member of the neuregulin family and has been demonstrated to have anti-inflammatory properties. The relationship between NRG1, microglia phenotype and neuroinflammation remains unclear.Materials and MethodsBV2 cells were used to examine the mechanism of NRG1 in regulating microglia polarization. Neuronal apoptosis, inflammatory factors TNF-α and iNOS, microglia polarization, ErbB4 and NF-κB p65 expression were assessed.ResultsWe found that exogenous NRG1 treatment or overexpression improved microglial activity and reduced the secretion of the inflammatory factors TNF-α and iNOS in vitro. The expression of Bax in SH-SY5Y neuron cells incubated with medium collected from the NRG1 treatment group decreased. Additionally, our study showed that NRG1 treatment reduced the levels of the M1 microglia markers CD120 and iNOS and increased the levels of the M2 microglia markers CD206 and Arg-1. Furthermore, we observed that NRG1 treatment attenuated Aβ-induced NF-κB activation and promoted the expression of p-ErbB4 and that knockdown of ErbB4 abrogated the effects of NRG1 on NF-κB, Bax levels and M2 microglial polarization. ConclusionNRG1 inhibits the release of inflammatory factors in microglia and regulates the switching of the M1/M2 microglia phenotype, most likely via ErbB4-dependent inhibition of the NF-κB pathway.


2021 ◽  
Vol 201 ◽  
pp. 108842
Author(s):  
Ming Chen ◽  
Ying Li ◽  
Ying Liu ◽  
Haibo Xu ◽  
Lin-Lin Bi
Keyword(s):  

2021 ◽  
pp. JN-RM-1022-21
Author(s):  
Heath L. Robinson ◽  
Zhibing Tan ◽  
Ivan Santiago-Marrero ◽  
Emily P. Arzola ◽  
Wen-Cheng Xiong ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Anne S. Mallien ◽  
Natascha Pfeiffer ◽  
Miriam A. Vogt ◽  
Sabine Chourbaji ◽  
Rolf Sprengel ◽  
...  

Extensive evidence suggests a dysfunction of the glutamate NMDA receptor (NMDAR) in schizophrenia, a severe psychiatric disorder with putative early neurodevelopmental origins, but clinical onset mainly during late adolescence. On the other hand, pharmacological models using NMDAR antagonists and the clinical manifestation of anti-NMDAR encephalitis indicate that NMDAR blockade/hypofunction can trigger psychosis also at adult stages, without any early developmental dysfunction. Previous genetic models of NMDAR hypofunction restricted to parvalbumin-positive interneurons indicate the necessity of an early postnatal impairment to trigger schizophrenia-like abnormalities, whereas the cellular substrates of NMDAR-mediated psychosis at adolescent/adult stages are unknown. Neuregulin 1 (NRG1) and its receptor ErbB4 represent schizophrenia-associated susceptibility factors that closely interact with NMDAR. To determine the neuronal populations implicated in “late” NMDAR-driven psychosis, we analyzed the effect of the inducible ablation of NMDARs in ErbB4-expressing cells in mice during late adolescence using a pharmacogenetic approach. Interestingly, the tamoxifen-inducible NMDAR deletion during this late developmental stage did not induce behavioral alterations resembling depression, schizophrenia or anxiety. Our data indicate that post-adolescent NMDAR deletion, even in a wider cell population than parvalbumin-positive interneurons, is also not sufficient to generate behavioral abnormalities resembling psychiatric disorders. Other neuronal substrates that have to be revealed by future studies, may underlie post-adolescent NMDAR-driven psychosis.


2021 ◽  
Author(s):  
Kimberly R. Bennett ◽  
Monique C. Surles-Zeigler ◽  
Cathrerine J. Augello ◽  
Etchi Ako ◽  
Victor G.J. Rodgers ◽  
...  

Neuregulin-1 (NRG-1) is growth factor that has been investigated for its neuroprotective properties following ischemic stroke. While NRG-1 has shown significant promise in preventing neuronal damage following stroke, the mechanisms behind its neuroprotective effects are unclear. The goal of this research was to investigate the effects of NRG-1 treatment on ischemia-induced gene expression profiles following a permanent middle cerebral artery occlusion (MCAO) in rats. Rats were sacrificed twelve hours following MCAO and either vehicle or NRG-1 treatment. RNA extracted from the peri-infarct cortex of the brain was hybridized to an Affymetrix Rat Genome 2.0st Microarray Gene Chip. Data were analyzed using the Affymetrix Transcriptome Analysis Console (TAC) 4.0 software and the STRING Protein-Protein Interaction Networks database.  Our results showed that NRG?1 delivery increased the regulation of pro-survival genes. Most notably, NRG-1 treatment upregulated the CREB1 and FOXO1 transcription factor pathways which are involved in increasing anti-inflammatory and cell proliferation responses and decreasing apoptosis and oxidative stress responses, respectively. Luminex multiplex transcription factor assays demonstrated that the activities of CREB1 and FOXO1 were increased by NRG-1 treatment with MCAO. These findings provide novel insight into the molecular mechanisms involved in NRG-1 mediated neuroprotection.


2021 ◽  
pp. 105545
Author(s):  
Allison R. Peterson ◽  
Terese A. Garcia ◽  
Byron D. Ford ◽  
Devin K. Binder
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document