Faculty Opinions recommendation of Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes.

Author(s):  
Gottfried Otting
Keyword(s):  
Science ◽  
2021 ◽  
Vol 372 (6546) ◽  
pp. 1057-1062
Author(s):  
Wesley E. Robertson ◽  
Louise F. H. Funke ◽  
Daniel de la Torre ◽  
Julius Fredens ◽  
Thomas S. Elliott ◽  
...  

It is widely hypothesized that removing cellular transfer RNAs (tRNAs)—making their cognate codons unreadable—might create a genetic firewall to viral infection and enable sense codon reassignment. However, it has been impossible to test these hypotheses. In this work, following synonymous codon compression and laboratory evolution in Escherichia coli, we deleted the tRNAs and release factor 1, which normally decode two sense codons and a stop codon; the resulting cells could not read the canonical genetic code and were completely resistant to a cocktail of viruses. We reassigned these codons to enable the efficient synthesis of proteins containing three distinct noncanonical amino acids. Notably, we demonstrate the facile reprogramming of our cells for the encoded translation of diverse noncanonical heteropolymers and macrocycles.


2000 ◽  
Vol 28 (5) ◽  
pp. A186-A186
Author(s):  
J. M. O'sullivan ◽  
E. Chukeatirote ◽  
S. Massey ◽  
B. Davenport ◽  
P. J. Brown ◽  
...  

Biochimie ◽  
1996 ◽  
Vol 78 (11-12) ◽  
pp. 993-999 ◽  
Author(s):  
M.F. Tuite ◽  
M.A.S. Santos

Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 546 ◽  
Author(s):  
David Schwark ◽  
Margaret Schmitt ◽  
John Fisk

Non-canonical amino acids (ncAAs) are finding increasing use in basic biochemical studies and biomedical applications. The efficiency of ncAA incorporation is highly variable, as a result of competing system composition and codon context effects. The relative quantitative contribution of the multiple factors affecting incorporation efficiency are largely unknown. This manuscript describes the use of green fluorescent protein (GFP) reporters to quantify the efficiency of amber codon reassignment using the Methanocaldococcus jannaschii orthogonal pair system, commonly employed for ncAA incorporation, and quantify the contribution of release factor 1 (RF1) to the overall efficiency of amino acid incorporation. The efficiencies of amber codon reassignments were quantified at eight positions in GFP and evaluated in multiple combinations. The quantitative contribution of RF1 competition to reassignment efficiency was evaluated through comparisons of amber codon suppression efficiencies in normal and genomically recoded Escherichia coli strains. Measured amber stop codon reassignment efficiencies for eight single stop codon GFP variants ranged from 51 to 117% in E. coli DH10B and 76 to 104% in the RF1 deleted E. coli C321.ΔA.exp. Evaluation of efficiency changes in specific sequence contexts in the presence and absence of RF1 suggested that RF1 specifically interacts with +4 Cs and that the RF1 interactions contributed approximately half of the observed sequence context-dependent variation in measured reassignment efficiency. Evaluation of multisite suppression efficiencies suggests that increasing demand for translation system components limits multisite incorporation in cells with competing RF1.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 592
Author(s):  
Evgeniy S. Balakirev

Mitochondrial (mt) genomes of the sea urchins Strongylocentrotus intermedius and Mesocentrotus nudus demonstrate the identical patterns of intraspecific length variability of the ND6 gene, consisting of 489 bp (S variant) and 498 bp (L variant), respectively. For both species, the ND6 length difference is due to the 488A>G substitution, which changes the stop codon TAG in S variant for a tryptophan codon TGG in L variant and elongates the corresponding ND6 protein by three additional amino acids, Trp-Leu-Trp. The phylogenetic analysis based on mt genomes of sea urchins and related echinoderm groups from GenBank has shown the S and L ND6 variants as shared among the camarodont sea urchins; the rest of the echinoderms demonstrate the S variant only. The data suggest that the ND6 488A>G substitution can be the first example of the trans-species polymorphism in sea urchins, persisting at least since the time of the Odontophora diversification at the Eocene/Oligocene boundary (approximately 34 million years ago), which was characterized by an abrupt climate change and significant global ocean cooling. Alternative hypotheses, including the convergent RNA editing and/or codon reassignment, are not supported by direct comparisons of the ND6 gene sequences with the corresponding transcripts using the basic local alignment search tool (BLAST) of full sea urchin transcriptomes.


1999 ◽  
Vol 13 (1) ◽  
pp. 41-51 ◽  
Author(s):  
NEDILJKO BUDISA ◽  
CAROLINE MINKS ◽  
STEFAN ALEFELDER ◽  
WALTRAUD WENGER ◽  
FUMIN DONG ◽  
...  

Genetics ◽  
2010 ◽  
Vol 185 (4) ◽  
pp. 1535-1536 ◽  
Author(s):  
John F. Atkins ◽  
Pavel V. Baranov
Keyword(s):  

Biochemistry ◽  
2015 ◽  
Vol 54 (50) ◽  
pp. 7355-7364 ◽  
Author(s):  
Wil Biddle ◽  
Margaret A. Schmitt ◽  
John D. Fisk

Sign in / Sign up

Export Citation Format

Share Document