amber codon
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 2)

H-INDEX

14
(FIVE YEARS 0)

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Shu Zhao ◽  
Jia Shi ◽  
Guohua Yu ◽  
Dali Li ◽  
Meng Wang ◽  
...  

AbstractTyrosine kinase A (TrkA) is a membrane receptor which, upon ligand binding, activates several pathways including MAPK/ERK signaling, implicated in a spectrum of human pathologies; thus, TrkA is an emerging therapeutic target in treatment of neuronal diseases and cancer. However, mechanistic insights into TrKA signaling are lacking due to lack of site-dependent phosphorylation control. Here we engineer two light-sensitive tyrosine analogues, namely p-azido-L-phenylalanine (AzF) and the caged-tyrosine (ONB), through amber codon suppression to optically manipulate the phosphorylation state of individual intracellular tyrosines in TrkA. We identify TrkA-AzF and ONB mutants, which can activate the ERK pathway in the absence of NGF ligand binding through light control. Our results not only reveal how TrkA site-dependent phosphorylation controls the defined signaling process, but also extend the genetic code expansion technology to enable regulation of receptor-type kinase activation by optical control at the precision of a single phosphorylation site. It paves the way for comprehensive analysis of kinase-associated pathways as well as screening of compounds intervening in a site-directed phosphorylation pathway for targeted therapy.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 546 ◽  
Author(s):  
David Schwark ◽  
Margaret Schmitt ◽  
John Fisk

Non-canonical amino acids (ncAAs) are finding increasing use in basic biochemical studies and biomedical applications. The efficiency of ncAA incorporation is highly variable, as a result of competing system composition and codon context effects. The relative quantitative contribution of the multiple factors affecting incorporation efficiency are largely unknown. This manuscript describes the use of green fluorescent protein (GFP) reporters to quantify the efficiency of amber codon reassignment using the Methanocaldococcus jannaschii orthogonal pair system, commonly employed for ncAA incorporation, and quantify the contribution of release factor 1 (RF1) to the overall efficiency of amino acid incorporation. The efficiencies of amber codon reassignments were quantified at eight positions in GFP and evaluated in multiple combinations. The quantitative contribution of RF1 competition to reassignment efficiency was evaluated through comparisons of amber codon suppression efficiencies in normal and genomically recoded Escherichia coli strains. Measured amber stop codon reassignment efficiencies for eight single stop codon GFP variants ranged from 51 to 117% in E. coli DH10B and 76 to 104% in the RF1 deleted E. coli C321.ΔA.exp. Evaluation of efficiency changes in specific sequence contexts in the presence and absence of RF1 suggested that RF1 specifically interacts with +4 Cs and that the RF1 interactions contributed approximately half of the observed sequence context-dependent variation in measured reassignment efficiency. Evaluation of multisite suppression efficiencies suggests that increasing demand for translation system components limits multisite incorporation in cells with competing RF1.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Christina S. Heil ◽  
Alexander Rittner ◽  
Bjarne Goebel ◽  
Daniel Beyer ◽  
Martin Grininger

2018 ◽  
Vol 31 (10) ◽  
pp. 389-398 ◽  
Author(s):  
Zachary T Britton ◽  
Timothy B London ◽  
Jeffrey Carrell ◽  
Bhupinder Dosanjh ◽  
Trevor Wilkinson ◽  
...  

2018 ◽  
Author(s):  
Christina S. Heil ◽  
Alexander Rittner ◽  
Bjarne Goebel ◽  
Daniel Beyer ◽  
Martin Grininger

AbstractAmber codon suppression is a powerful tool to site-specifically modify proteins to generate novel biophysical probes. Yet, its application on large and complex multidomain proteins is challenging, leading to difficulties during structural and conformational characterization using spectroscopic methods. The animal fatty acid synthase type I is a 540 kDa homodimer displaying large conformational variability. As the key enzyme of de novo fatty acid synthesis, it attracts interest in the fields of obesity, diabetes and cancer treatment. Substrates and intermediates remain covalently bound to the enzyme during biosynthesis and are shuttled to all catalytic domains by the acyl carrier protein domain. Thus, conformational variability of animal FAS is an essential aspect for fatty acid biosynthesis. We investigate this multidomain protein as a model system for probing amber codon suppression by genetic encoding of non-canonical amino acids. The systematic approach relies on a microplate-based reporter assay of low complexity, that was used for quick screening of suppression conditions. Furthermore, the applicability of the reporter assay is demonstrated by successful upscaling to both full-length constructs and increased expression scale. The obtained fluorescent probes of murine FAS type I could be subjected readily to a conformational analysis using single-molecule fluorescence resonance energy transfer.


2017 ◽  
Author(s):  
Adrian Hohl ◽  
Ram Karan ◽  
Anstassja Akal ◽  
Dominik Renn ◽  
Xuechao Liu ◽  
...  

AbstractThe Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl are used to facilitate the incorporation of non-canonical amino acids (ncAAs) into the genetic code of bacterial and eukaryotic cells by orthogonally reassigning the amber codon. Currently, the incorporation of new ncAAs requires a cumbersome engineering process composed of several positive and negative selection rounds to select the appropriate PylRS/tRNAPyl pair. Our fast and sensitive engineering approach required only a single FACS selection round to identify 110 orthogonal PylRS variants for the aminoacylation of 20 ncAAs. Pocket-substrate relationship from these variants led to the design of a highly promiscuous PylRS (HpRS), which catalyzed the aminoacylation of 31 structurally diverse lysine derivatives bearing clickable, fluorinated, fluorescent, and biotinylated entities. The high speed and sensitivity of our approach provides a competitive alternative to existing screening methodologies, and delivers insights into the complex PylRS-substrate interactions to facilitate the generation of additional promiscuous variants.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Bo Zhang ◽  
Qi Yang ◽  
Jingxian Chen ◽  
Ling Wu ◽  
Tianzhuo Yao ◽  
...  

2016 ◽  
Vol 52 (85) ◽  
pp. 12606-12609 ◽  
Author(s):  
Yan-Jiun Lee ◽  
M. J. Schmidt ◽  
Jeffery M. Tharp ◽  
Annemarie Weber ◽  
Amber L. Koenig ◽  
...  
Keyword(s):  

Fluorophenylalanines bearing 2–5 fluorine atoms at the phenyl ring have been genetically encoded by amber codon.


Sign in / Sign up

Export Citation Format

Share Document