sense codon
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 20)

H-INDEX

14
(FIVE YEARS 3)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yekaterina Shulgina ◽  
Sean R Eddy

The genetic code has been proposed to be a 'frozen accident', but the discovery of alternative genetic codes over the past four decades has shown that it can evolve to some degree. Since most examples were found anecdotally, it is difficult to draw general conclusions about the evolutionary trajectories of codon reassignment and why some codons are affected more frequently. To fill in the diversity of genetic codes, we developed Codetta, a computational method to predict the amino acid decoding of each codon from nucleotide sequence data. We surveyed the genetic code usage of over 250,000 bacterial and archaeal genome sequences in GenBank and discovered five new reassignments of arginine codons (AGG, CGA, and CGG), representing the first sense codon changes in bacteria. In a clade of uncultivated Bacilli, the reassignment of AGG to become the dominant methionine codon likely evolved by a change in the amino acid charging of an arginine tRNA. The reassignments of CGA and/or CGG were found in genomes with low GC content, an evolutionary force which likely helped drive these codons to low frequency and enable their reassignment.


2021 ◽  
Vol 22 (21) ◽  
pp. 11933
Author(s):  
Ivana Pibiri

Nonsense mutations are the result of single nucleotide substitutions in the DNA that change a sense codon (coding for an amino acid) to a nonsense or premature termination codon (PTC) within the coding region of the mRNA [...]


2021 ◽  
Vol 22 (21) ◽  
pp. 11482
Author(s):  
Yusuke Kato

A protocol was designed for plasmid curing using a novel counter-selectable marker, named pylSZK-pylT, in Escherichia coli. The pylSZK-pylT marker consists of the archaeal pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNApyl) with modification, and incorporates an unnatural amino acid (Uaa), Nε-benzyloxycarbonyl-l-lysine (ZK), at a sense codon in ribosomally synthesized proteins, resulting in bacterial growth inhibition or killing. Plasmid curing is performed by exerting toxicity on pylSZK-pylT located on the target plasmid, and selecting only proliferative bacteria. All tested bacteria obtained using this protocol had lost the target plasmid (64/64), suggesting that plasmid curing was successful. Next, we attempted to exchange plasmids with the identical replication origin and an antibiotic resistance gene without plasmid curing using a modified protocol, assuming substitution of plasmids complementing genomic essential genes. All randomly selected bacteria after screening had only the substitute plasmid and no target plasmid (25/25), suggesting that plasmid exchange was also accomplished. Counter-selectable markers based on PylRS-tRNApyl, such as pylSZK-pylT, may be scalable in application due to their independence from the host genotype, applicability to a wide range of species, and high tunability due to the freedom of choice of target codons and Uaa’s to be incorporated.


Author(s):  
Yusuke Kato

A protocol was designed for plasmid curing using a novel counter-selectable marker, named pylSZK-pylT, in Escherichia coli. The pylSZK-pylT marker consists of the archaeal pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNApyl) with modification, and incorporates an unnatural amino acid (Uaa), Nε-benzyloxycarbonyl-l-lysine (ZK), at a sense codon in ribosomally synthesized proteins, resulting in bacterial growth inhibition or killing. Plasmid curing is performed by exerting toxicity on pylSZK-pylT located on the target plasmid, and selecting only proliferative bacteria. All tested bacteria obtained using this protocol had lost the target plasmid (64/64), suggesting that plasmid curing was successful. Next, we attempted to exchange plasmids with the identical replication origin and an antibiotic resistance gene without plasmid curing using a modified protocol, assuming substitution of plasmids complementing genomic essential genes. All randomly selected bacteria after screening had only the substitute plasmid and no target plasmid (25/25), suggesting that plasmid exchange was also accomplished. Counter-selectable markers based on PylRS-tRNApyl, such as pylSZK-pylT, may be scalable in application due to their independence from the host genotype, applicability to a wide range of species, and high tunability due to the freedom of choice of target codons and Uaa’s to be incorporated.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 920
Author(s):  
Yusuke Kato

We designed a novel growth controller regulated by feeding of an unnatural amino acid, Nε-benzyloxycarbonyl-l-lysine (ZK), using a specific incorporation system at a sense codon. This system is constructed by a pair of modified pyrrolisyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNApyl). Although ZK is non-toxic for normal organisms, the growth of Escherichia coli carrying the ZK incorporation system was inhibited in a ZK concentration-dependent manner without causing rapid bacterial death, presumably due to generation of non-functional or toxic proteins. The extent of growth inhibition strongly depended on the anticodon sequence of the tRNApyl gene. Taking advantage of the low selectivity of PylRS for tRNApyl anticodons, we experimentally determined the most effective anticodon sequence among all 64 nucleotide sequences in the anticodon region of tRNApyl gene. The results suggest that the ZK-regulated growth controller is a simple, target-specific, environmental noise-resistant and titratable system. This technique may be applicable to a wide variety of organisms because the growth inhibitory effects are caused by “informational disturbance”, in which the highly conserved system for transmission of information from DNA to proteins is perturbed.


Author(s):  
Yusuke Kato

We designed a novel growth controller regulated by feeding of an unnatural amino acid, Nε-benzyloxycarbonyl-L-lysine (ZK), using a specific incorporation system at a sense codon. This system is constructed by a pair of modified pyrrolisyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNApyl). Although ZK is non-toxic for normal organisms, the growth of Escherichia coli carrying the ZK incorporation system was inhibited in a ZK concentration-dependent manner without causing rapid bacterial death, presumably due to generation of non-functional or toxic proteins. The extent of growth inhibition strongly depended on the anticodon sequence of the tRNApyl gene. Taking advantage of the low selectivity of PylRS for tRNApyl anticodons, we experimentally determined the most effective anticodon sequence among all 64 nucleotide sequences in the anticodon region of tRNApyl gene. The results suggest that the ZK-regulated growth controller is a simple, target-specific, environmental noise-resistant and titratable system. This technique may be applicable to a wide variety of organisms because the growth inhibitory effects are caused by “informational disturbance”, in which the highly conserved system for transmission of information from DNA to proteins is perturbed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Suki Albers ◽  
Bertrand Beckert ◽  
Marco C. Matthies ◽  
Chandra Sekhar Mandava ◽  
Raphael Schuster ◽  
...  

AbstractThree stop codons (UAA, UAG and UGA) terminate protein synthesis and are almost exclusively recognized by release factors. Here, we design de novo transfer RNAs (tRNAs) that efficiently decode UGA stop codons in Escherichia coli. The tRNA designs harness various functionally conserved aspects of sense-codon decoding tRNAs. Optimization within the TΨC-stem to stabilize binding to the elongation factor, displays the most potent effect in enhancing suppression activity. We determine the structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon in the A site at 2.9 Å resolution. In the context of the suppressor tRNA, the conformation of the UGA codon resembles that of a sense-codon rather than when canonical translation termination release factors are bound, suggesting conformational flexibility of the stop codons dependent on the nature of the A-site ligand. The systematic analysis, combined with structural insights, provides a rationale for targeted repurposing of tRNAs to correct devastating nonsense mutations that introduce a premature stop codon.


2021 ◽  
Author(s):  
Yekaterina Shulgina ◽  
Sean R. Eddy

The genetic code has been proposed to be a "frozen accident", but the discovery of alternative genetic codes over the past four decades has shown that it can evolve to some degree. Since most examples were found anecdotally, it is difficult to draw general conclusions about the evolutionary trajectories of codon reassignment and why some codons are affected more frequently. To fill in the diversity of genetic codes, we developed Codetta, a computational method to predict the amino acid decoding of each codon from nucleotide sequence data. We surveyed the genetic code usage of over 250,000 bacterial and archaeal genome sequences in GenBank and discovered five new reassignments of arginine codons (AGG, CGA, and CGG), representing the first sense codon changes in bacteria. In a clade of uncultivated Bacilli, the reassignment of AGG to become the dominant methionine codon likely evolved by a change in the amino acid charging of an arginine tRNA. The reassignments of CGA and/or CGG were found in genomes with low GC content, an evolutionary force which likely helped drive these codons to low frequency and enable their reassignment.


Science ◽  
2021 ◽  
Vol 372 (6546) ◽  
pp. 1057-1062
Author(s):  
Wesley E. Robertson ◽  
Louise F. H. Funke ◽  
Daniel de la Torre ◽  
Julius Fredens ◽  
Thomas S. Elliott ◽  
...  

It is widely hypothesized that removing cellular transfer RNAs (tRNAs)—making their cognate codons unreadable—might create a genetic firewall to viral infection and enable sense codon reassignment. However, it has been impossible to test these hypotheses. In this work, following synonymous codon compression and laboratory evolution in Escherichia coli, we deleted the tRNAs and release factor 1, which normally decode two sense codons and a stop codon; the resulting cells could not read the canonical genetic code and were completely resistant to a cocktail of viruses. We reassigned these codons to enable the efficient synthesis of proteins containing three distinct noncanonical amino acids. Notably, we demonstrate the facile reprogramming of our cells for the encoded translation of diverse noncanonical heteropolymers and macrocycles.


2021 ◽  
Vol 22 (4) ◽  
pp. 1876
Author(s):  
Frida Belinky ◽  
Ishan Ganguly ◽  
Eugenia Poliakov ◽  
Vyacheslav Yurchenko ◽  
Igor B. Rogozin

Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons—where an intermediate step is a nonsense substitution—show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.


Sign in / Sign up

Export Citation Format

Share Document