synonymous codon
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 161)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
Vol 43 (1) ◽  
pp. 123-132
Author(s):  
W. Ahmed ◽  
◽  
S. Gupta ◽  
I. Mukherjee ◽  
V.K. Babu ◽  
...  

Aim: The aim of the present study was to understand the molecular relationship between nematode (parasite) and fish (host) through codon usage bias (CUB) analysis. Methodology: The Codon usage bias analysis has been performed in fish Carassius gibelio (Prussian carp) and nematode fish parasite Anisakis simplex. The complete coding sequences (CDS) of C. gibelio (Prussian carp) and A. simplex (Nematode) were retrieved from National Center for Biotechnology Information and followed to that we have performed bioinformatics analysis to understand the codon usage pattern between host and parasite. Results: Different CUB indices like Relative synonymous codon usage (RSCU), Effective number of codons (ENC), Codon adaptation index (CAI) and Codon bias index (CBI) revealed a similar pattern in the codon usage in C. gibelio and A. simplex. In addition, inclusive analysis using different plots (ENC, parity, neutrality) had shown the influence of both the evolutionary forces i.e mutational and translational selection on codon usage pattern. This describes the role of evolutionary forces in determining the conserved genome to establish species-specific function-level differences for efficient survival. Interpretation: The present study elucidated the association between Carassiusgibelio (host) and Anisakis simplex (parasite) based on the similar pattern of codon usage bias between both the species.


2021 ◽  
Author(s):  
Deepa Agashe

During the 50 years since the genetic code was cracked, our understanding of the evolutionary consequences of synonymous mutations has undergone a dramatic shift. Synonymous codon changes were initially considered selectively neutral, and as such, exemplars of evolution via genetic drift. However, the pervasive and non-negligible fitness impacts of synonymous mutations are now clear across organisms. Despite the accumulated evidence, it remains challenging to incorporate the effects of synonymous changes in studies of selection, because the existing analytical framework was built with a focus on the fitness effects of nonsynonymous mutations. In this chapter, I trace the development of this topic and discuss the evidence that gradually transformed our thinking about the role of synonymous mutations in evolution. I suggest that our evolutionary framework should encompass the impacts of all mutations on various forms of information transmission. Folding synonymous mutations into a common distribution – rather than setting them apart as a distinct category – will allow a more complete and cohesive picture of the evolutionary consequences of new mutations.


2021 ◽  
Author(s):  
Ezequiel G. Mogro ◽  
Daniela Bottero ◽  
Mauricio J. Lozano

SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening respiratory pathologies. To better understand SARS-CoV-2 evolution, genome-wide analyses have been made, including the general characterization of its codons usage profile. Here we present a bioinformatic analysis of the evolution of SARS-CoV-2 codon usage over time using complete genomes collected since December 2019. Our results show that SARS-CoV-2 codon usage pattern is antagonistic to, and it is getting farther away from that of the human host. Further, a selection of deoptimized codons over time, which was accompanied by a decrease in both the codon adaptation index and the effective number of codons, was observed. All together, these findings suggest that SARS-CoV-2 could be evolving, at least from the perspective of the synonymous codon usage, to become less pathogenic.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1649
Author(s):  
Rahul Raveendran Nair ◽  
Manikandan Mohan ◽  
Gudepalya R. Rudramurthy ◽  
Reethu Vivekanandam ◽  
Panayampalli S. Satheshkumar

Trends associated with codon usage in molluscum contagiosum virus (MCV) and factors governing the evolution of codon usage have not been investigated so far. In this study, attempts were made to decipher the codon usage trends and discover the major evolutionary forces that influence the patterns of codon usage in MCV with special reference to sub-types 1 and 2, MCV-1 and MCV-2, respectively. Three hypotheses were tested: (1) codon usage patterns of MCV-1 and MCV-2 are identical; (2) SCUB (synonymous codon usage bias) patterns of MCV-1 and MCV-2 slightly deviate from that of human host to avoid affecting the fitness of host; and (3) translational selection predominantly shapes the SCUB of MCV-1 and MCV-2. Various codon usage indices viz. relative codon usage value, effective number of codons and codon adaptation index were calculated to infer the nature of codon usage. Correspondence analysis and correlation analysis were performed to assess the relative contribution of silent base contents and significance of codon usage indices in defining bias in codon usage. Among the tested hypotheses, only the second and third hypotheses were accepted.


2021 ◽  
Author(s):  
Indrani Sarkar ◽  
Prateek Dey ◽  
Saurabh Singh Rathore ◽  
Gyan Dev Singh ◽  
Ram Pratap Singh

Abstract Neisseria, a genus from beta-proteobacteria class, is of potent clinical importance. This genus contains both pathogenic and commensal strains. Gonorrhea and meningitis are two major diseases caused by pathogens belonging to this genus. With increased use of antimicrobial agents against these pathogens they have evolved the antimicrobial resistance (AMR) capacity making these diseases nearly untreatable. The set of anti-bacterial resistance genes (resistome) and genes associated with signal processing (secretomes) are crucial for the host-microbial interaction. With the virtue of whole genome sequences and computational biology it is now possible to study the genomic and proteomic riddles of Neisseria along with their comprehensive evolutionary and metabolic profiling. We have studied relative synonymous codon usage, amino acid usage, reverse ecology, comparative genomics, evolutionary analysis and pathogen-host (Neisseria-human) interaction through bioinformatics analysis. Our analysis revealed the co-evolution of Neisseria genomes with the human host. Moreover, co-occurrence of Neisseria and humans has been supported through reverse ecology analysis. A differential pattern of evolutionary rate of resistomes and secretomes was evident among the pathogenic and commensal strains. Comparative genomics supported the presence of virulent genes in both pathogenic and commensal strains of select genus. Our analysis also indicated a transition from commensal to pathogenic Neisseria strains through the long run of evolution.


2021 ◽  
Author(s):  
Yanan Fu ◽  
Yanping Huang ◽  
Jingjing Rao ◽  
Feng Zeng ◽  
Ruiping Yang ◽  
...  

Abstract The outbreak of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, spread across hosts from humans to animals, transmitting particularly effectively in mink. How SARS-CoV-2 selects and evolves in the host, and the differences in the evolution of different animals are still unclear. To analysis the mutation and codon usage bias of SARS-CoV-2 in infected humans and animals. The SARS-CoV-2 sequence in mink (Mink-SARS2) and binding energy with receptor were calculated compared with human. The relative synonymous codon usage of viral encoded gene was analyzed to characterize the differences and the evolutionary characteristics. A synonymous codon usage analysis showed that SARS-CoV-2 is optimized to adapt in the animals in which it is currently reported, and all of the animals showed decreased adaptability relative to that of humans, except for mink. The neutrality plot showed that the effect of natural selection on different SARS-CoV-2 sequences is stronger than mutation pressure. A binding affinity analysis indicated that the spike protein of the SARS-CoV-2 variant in mink showed a greater preference for binding with the mink receptor ACE2 than with the human receptor, especially as the mutation Y453F and N501T in Mink-SARS2 lead to improvement of binding affinity for mink receptor. In summary, mutations Y453F and N501T in Mink-SARS2 lead to improvement of binding affinity with mink receptor, indicating possible natural selection and current host adaptation. Monitoring the variation and codon bias of SARS-CoV-2 provides a theoretical basis for tracing the epidemic, evolution and cross-species spread of SARS-CoV-2.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261196
Author(s):  
Guangxin Cui ◽  
Chunmei Wang ◽  
Xiaoxing Wei ◽  
Hongbo Wang ◽  
Xiaoli Wang ◽  
...  

Background Hordeum brevisubulatum, known as fine perennial forage, is used for soil salinity improvement in northern China. Chloroplast (cp) genome is an ideal model for assessing its genome evolution and the phylogenetic relationships. We de novo sequenced and analyzed the cp genome of H. brevisubulatum, providing a fundamental reference for further studies in genetics and molecular breeding. Results The cp genome of H. brevisubulatum was 137,155 bp in length with a typical quadripartite structure. A total of 130 functional genes were annotated and the gene of accD was lost in the process of evolution. Among all the annotated genes, 16 different genes harbored introns and the genes of ycf3 and rps12 contained two introns. Parity rule 2 (PR2) plot analysis showed that majority of genes had a bias toward T over A in the coding strand in all five Hordeum species, and a slight G over C in the other four Hordeum species except for H. bogdanil. Additionally, 52 dispersed repeat sequences and 182 simple sequence repeats were identified. Moreover, some unique SSRs of each species could be used as molecular markers for further study. Compared to the other four Hordeum species, H. brevisubulatum was most closely related to H. bogdanii and its cp genome was relatively conserved. Moreover, inverted repeat regions (IRa and IRb) were less divergent than other parts and coding regions were relatively conserved compared to non-coding regions. Main divergence was presented at the SSC/IR border. Conclusions This research comprehensively describes the architecture of the H. brevisubulatum cp genome and improves our understanding of its cp biology and genetic diversity, which will facilitate biological discoveries and cp genome engineering.


2021 ◽  
Vol 948 (1) ◽  
pp. 012081
Author(s):  
K S Dewi ◽  
F D Wahyuni ◽  
S Salsabila ◽  
Aminah ◽  
N D Yanthi ◽  
...  

Abstract Colony-stimulating factor 3 (CSF3) is a glycoprotein with many therapeutic applications. In the Escherichia coli expression system, mRNA folding and stability near the translation initiation region (TIR) are known to influence protein expression significantly. We have successfully constructed the recombinant plasmid carrying genes encoding CSF3.1 and CSF3.2, which have different synonymous codon usage at N-terminal. In this study, we compared both expressions of CSF3.1 and CSF3.2 recombinant proteins in E. coli host. Recombinant plasmid pJ414-CSF3.1 and pJ414-CSF3.2 were transformed individually into E. coli NiCo21(DE3) competent cells by a heat-shock method, then spread on solid Lysogeny Broth (LB) medium containing ampicillin. Eight transformant colonies were selected and then expressed in 2xYT medium with the addition of IPTG inducer. Expression analysis was carried out using 15% SDS-PAGE gel. No significantly different band was observed in CSF3.1 protein expression compared to the negative control. In contrast, CSF3.2 protein can be expressed with a good amount at its expected size of 18 kDa. This result was strengthened by bioinformatics analysis which demonstrated the more open TIR of CSF3.2 than that of CSF3.1 Our study highlighted that AU-rich mRNA at the N-terminal is essential for efficient recognition of the ribosome binding site.


2021 ◽  
Author(s):  
Kevin McKernan ◽  
Anthony M. Kyriakopoulos ◽  
Peter McCullough

Codon optimization describes the process used to increase protein production by use of alternative but synonymous codon changes. In SARS-CoV-2 mRNA vaccines codon optimizations can result in differential secondary conformations that inevitably affect a protein’s function with significant consequences to the cell. Importantly, when codon optimization increases the GC content of synthetic mRNAs, there can be an inevitable enrichment of G-quartets which potentially form G-quadruplex structures. The emerging G-quadruplexes are favorable binding sites of RNA binding proteins like helicases that inevitably affect epigenetic reprogramming of the cell by altering transcription, translation and replication. In this study, we performed a RNAfold analysis to investigate alterations in secondary structures of mRNAs in SARS-CoV-2 vaccines due to codon optimization. We show a significant increase in the GC content of mRNAs in vaccines as compared to native SARS-CoV-2 RNA sequences encoding the spike protein. As the GC enrichment leads to more G-quadruplex structure formations, these may contribute to potential pathological processes initiated by SARS-CoV-2 molecular vaccination.


Sign in / Sign up

Export Citation Format

Share Document