scholarly journals Faculty Opinions recommendation of Stiffness and tension gradients of the hair cell's tip-link complex in the mammalian cochlea.

Author(s):  
Tobias Moser
Keyword(s):  
2005 ◽  
Vol 15 (5-6) ◽  
pp. 263-278
Author(s):  
J.-H. Nam ◽  
J.R. Cotton ◽  
J.W. Grant

A dynamic 3-D hair bundle model including inertia and viscous fluid drag effects based on the finite element method is presented. Six structural components are used to construct the hair bundle – kinocilium, stereocilia, upper lateral links, shaft links, tip links, and kinocilial links. Fluid drag is distributed on the surface of cilia columns. Bundle mechanics are analyzed under two distinct loading conditions: (1) drag caused by the shear flow of the surrounding endolymph fluid (fluid-forced), (2) a single force applied to the tip of the kinocilium (point-forced). A striolar and a medial extrastriolar vestibular hair cell from the utricle of a turtle are simulated. The striolar cell bundle shows a clear difference in tip link tension profile between fluid-forced and point-forced cases. When the striolar cell is fluid forced, it shows more evenly distributed tip link tensions and is far more sensitive, responding like an on/off switch. The extrastriolar cell does not show noticeable differences between the forcing types. For both forcing conditions, the extrastriolar cell responds serially – the nearest tip links to the kinocilium get tensed first, then the tension propagates to the farther tip links.


1998 ◽  
Vol 18 (12) ◽  
pp. 4603-4615 ◽  
Author(s):  
Peter S. Steyger ◽  
Peter G. Gillespie ◽  
Richard A. Baird
Keyword(s):  
Tip Link ◽  

2014 ◽  
Vol 111 (35) ◽  
pp. 12907-12912 ◽  
Author(s):  
R. Maeda ◽  
K. S. Kindt ◽  
W. Mo ◽  
C. P. Morgan ◽  
T. Erickson ◽  
...  

2003 ◽  
Vol 181 (1-2) ◽  
pp. 40-50 ◽  
Author(s):  
Rachel Kurian ◽  
Nadia L Krupp ◽  
James C Saunders
Keyword(s):  
Tip Link ◽  

2008 ◽  
Vol 28 (44) ◽  
pp. 11269-11276 ◽  
Author(s):  
Z. Xu ◽  
A. W. Peng ◽  
K. Oshima ◽  
S. Heller

2015 ◽  
Vol 108 (2) ◽  
pp. 562a
Author(s):  
Yoshie Narui ◽  
Marcos Sotomayor

2019 ◽  
Author(s):  
Eric M. Mulhall ◽  
Andrew Ward ◽  
Darren Yang ◽  
Mounir A. Koussa ◽  
David P. Corey ◽  
...  

AbstractOur senses of hearing and balance rely on the extraordinarily sensitive molecular machinery of the inner ear to convert deflections as small as the width of a single carbon atom1,2 into electrical signals that the brain can process3. In humans and other vertebrates, transduction is mediated by hair cells4, where tension on tip links conveys force to mechanosensitive ion channels5. Each tip link comprises two helical filaments of atypical cadherins bound at their N-termini through two unique adhesion bonds6–8. Tip links must be strong enough to maintain a connection to the mechanotransduction channel under the dynamic forces exerted by sound or head movement—yet might also act as mechanical circuit breakers, releasing under extreme conditions to preserve the delicate structures within the hair cell. Previous studies have argued that this connection is exceptionally static, disrupted only by harsh chemical conditions or loud sound9–12. However, no direct mechanical measurements of the full tip-link connection have been performed. Here we describe the dynamics of the tip-link connection at single-molecule resolution and show how avidity conferred by its double stranded architecture enhances mechanical strength and lifetime, yet still enables it to act as a dynamic mechanical circuit breaker. We also show how the dynamic strength of the connection is facilitated by strong cis-dimerization and tuned by extracellular Ca2+, and we describe the unexpected etiology of a hereditary human deafness mutation. Remarkably, the connection is several thousand times more dynamic than previously thought, challenging current assumptions about tip-link stability and turnover rate, and providing insight into how the mechanotransduction apparatus conveys mechanical information. Our results reveal fundamental mechanisms that underlie mechanoelectric transduction in the inner ear, and provide a foundation for studying multi-component linkages in other biological systems.


2019 ◽  
Author(s):  
Francesco Gianoli ◽  
Thomas Risler ◽  
Andrei S. Kozlov

ABSTRACTHearing relies on the conversion of mechanical stimuli into electrical signals. In vertebrates, this process of mechano-electrical transduction (MET) is performed by specialized receptors of the inner ear, the hair cells. Each hair cell is crowned by a hair bundle, a cluster of microvilli that pivot in response to sound vibrations, causing the opening and closing of mechanosensitive ion channels. Mechanical forces are projected onto the channels by molecular springs called tip links. Each tip link is thought to connect to a small number of MET channels that gate cooperatively and operate as a single transduction unit. Pushing the hair bundle in the excitatory direction opens the channels, after which they rapidly reclose in a process called fast adaptation. It has been experimentally observed that the hair cell’s biophysical properties mature gradually during postnatal development: the maximal transduction current increases, sensitivity sharpens, transduction occurs at smaller hair-bundle displacements, and adaptation becomes faster. Similar observations have been reported during tip-link regeneration after acoustic damage. Moreover, when measured at intermediate developmental stages, the kinetics of fast adaptation varies in a given cell depending on the magnitude of the imposed displacement. The mechanisms underlying these seemingly disparate observations have so far remained elusive. Here, we show that these phenomena can all be explained by the progressive addition of MET channels of constant properties, which populate the hair bundle first as isolated entities, then progressively as clusters of more sensitive, cooperative MET channels. As the proposed mechanism relies on the difference in biophysical properties between isolated and clustered channels, this work highlights the importance of cooperative interactions between mechanosensitive ion channels for hearing.SIGNIFICANCEHair cells are the sensory receptors of the inner ear that convert mechanical stimuli into electrical signals transmitted to the brain. Sensitivity to mechanical stimuli and the kinetics of mechanotransduction currents change during hair-cell development. The same trend, albeit on a shorter timescale, is also observed during hair-cell recovery from acoustic trauma. Furthermore, the current kinetics in a given hair cell depends on the stimulus magnitude, and the degree of that dependence varies with development. These phenomena have so far remained unexplained. Here, we show that they can all be reproduced using a single unifying mechanism: the progressive formation of channel pairs, in which individual channels interact through the lipid bilayer and gate cooperatively.


Sign in / Sign up

Export Citation Format

Share Document