scholarly journals Faculty Opinions recommendation of Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution.

Author(s):  
Jiming Jiang
2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Wajad Nazeer ◽  
Muhammad Naeem ◽  
Maria Basheer ◽  
Jehanzaib Farooq ◽  
Abdul Latif Khan ◽  
...  

2015 ◽  
Vol 33 (5) ◽  
pp. 524-530 ◽  
Author(s):  
Fuguang Li ◽  
Guangyi Fan ◽  
Cairui Lu ◽  
Guanghui Xiao ◽  
Changsong Zou ◽  
...  

Genome ◽  
2006 ◽  
Vol 49 (4) ◽  
pp. 336-345 ◽  
Author(s):  
Aparna Desai ◽  
Peng W Chee ◽  
Junkang Rong ◽  
O Lloyd May ◽  
Andrew H Paterson

The genus Gossypium, which comprises a divergent group of diploid species and several recently formed allotetraploids, offers an excellent opportunity to study polyploid genome evolution. In this study, chromosome structural variation among the A, At, and D genomes of Gossypium was evaluated by comparative genetic linkage mapping. We constructed a fully resolved RFLP linkage map for the diploid A genome consisting of 275 loci using an F2 interspecific Gossypium arboreum × Gossypium herbaceum family. The 13 chromosomes of the A genome are represented by 12 large linkage groups in our map, reflecting an expected interchromosomal translocation between G. arboreum and G. herbaceum. The A-genome chromosomes are largely collinear with the D genomes, save for a few small inversions. Although the 2 diploid mapping parents represent the closest living relatives of the allotetraploid At-genome progenitor, 2 translocations and 7 inversions were observed between the A and At genomes. The recombination rates are similar between the 2 diploid genomes; however, the At genome shows a 93% increase in recombination relative to its diploid progenitors. Elevated recombination in the Dt genome was reported previously. These data on the At genome thus indicate that elevated recombination was a general property of allotetraploidy in cotton.Key words: comparative mapping, polyploidy, genome evolution, inversions, translocations, RFLP.


2020 ◽  
Vol 48 (22) ◽  
pp. 12604-12617
Author(s):  
Pengpeng Long ◽  
Lu Zhang ◽  
Bin Huang ◽  
Quan Chen ◽  
Haiyan Liu

Abstract We report an approach to predict DNA specificity of the tetracycline repressor (TetR) family transcription regulators (TFRs). First, a genome sequence-based method was streamlined with quantitative P-values defined to filter out reliable predictions. Then, a framework was introduced to incorporate structural data and to train a statistical energy function to score the pairing between TFR and TFR binding site (TFBS) based on sequences. The predictions benchmarked against experiments, TFBSs for 29 out of 30 TFRs were correctly predicted by either the genome sequence-based or the statistical energy-based method. Using P-values or Z-scores as indicators, we estimate that 59.6% of TFRs are covered with relatively reliable predictions by at least one of the two methods, while only 28.7% are covered by the genome sequence-based method alone. Our approach predicts a large number of new TFBs which cannot be correctly retrieved from public databases such as FootprintDB. High-throughput experimental assays suggest that the statistical energy can model the TFBSs of a significant number of TFRs reliably. Thus the energy function may be applied to explore for new TFBSs in respective genomes. It is possible to extend our approach to other transcriptional factor families with sufficient structural information.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 246
Author(s):  
Xiaomeng Chen ◽  
Rui Li ◽  
Yonglin Wang ◽  
Aining Li

An emerging poplar canker caused by the gram-negative bacterium, Lonsdalea populi, has led to high mortality of hybrid poplars Populus × euramericana in China and Europe. The molecular bases of pathogenicity and bark adaptation of L. populi have become a focus of recent research. This study revealed the whole genome sequence and identified putative virulence factors of L. populi. A high-quality L. populi genome sequence was assembled de novo, with a genome size of 3,859,707 bp, containing approximately 3434 genes and 107 RNAs (75 tRNA, 22 rRNA, and 10 ncRNA). The L. populi genome contained 380 virulence-associated genes, mainly encoding for adhesion, extracellular enzymes, secretory systems, and two-component transduction systems. The genome had 110 carbohydrate-active enzyme (CAZy)-coding genes and putative secreted proteins. The antibiotic-resistance database annotation listed that L. populi was resistant to penicillin, fluoroquinolone, and kasugamycin. Analysis of comparative genomics found that L. populi exhibited the highest homology with the L. britannica genome and L. populi encompassed 1905 specific genes, 1769 dispensable genes, and 1381 conserved genes, suggesting high evolutionary diversity and genomic plasticity. Moreover, the pan genome analysis revealed that the N-5-1 genome is an open genome. These findings provide important resources for understanding the molecular basis of the pathogenicity and biology of L. populi and the poplar-bacterium interaction.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Daniel R. Reuß ◽  
Andrea Thürmer ◽  
Rolf Daniel ◽  
Wim J. Quax ◽  
Jörg Stülke

Bacillus subtilis ∆6 is a genome-reduced strain that was cured from six prophages and AT-rich islands. This strain is of great interest for biotechnological applications. Here, we announce the full-genome sequence of this strain. Interestingly, the conjugative element ICE Bs 1 has most likely undergone self-excision in B. subtilis ∆6.


Crop Science ◽  
1994 ◽  
Vol 34 (2) ◽  
pp. 519-527 ◽  
Author(s):  
Marsha A. Stanton ◽  
J. McD. Stewart ◽  
A. Edward Percival ◽  
Jonathan F. Wendel

Sign in / Sign up

Export Citation Format

Share Document