Faculty Opinions recommendation of Phloem loading in rice leaves depends strongly on the apoplastic pathway.

Author(s):  
John Patrick
Author(s):  
Gaopeng Wang ◽  
Yue Wu ◽  
Li Ma ◽  
Yan Lin ◽  
Yuxiang Hu ◽  
...  

Abstract Phloem loading is the first step in sucrose transport from source leaves to sink organs. The phloem loading strategy in rice remains unclear. To determine the potential phloem loading mechanism in rice, yeast invertase (INV) was overexpressed specifically in the cell wall by 35S promoter to block sugar transmembrane loading in rice. The transgenic lines exhibited obvious phloem loading suppression characteristics accompanied by the accumulation of sucrose and starch, restricted vegetative growth and decreased grain yields. The decreased sucrose exudation rate with p-chloromercuribenzenesulfonic acid (PCMBS) treatment also indicated that rice actively transported sucrose into phloem. Moreover, the expression level of OsSUT1 was much higher than that of other plasma membrane localized OsSUTs in the source leaf. Cross sections of the GUS transgenic plant showed that the signals of OsSUT1 and OsSUT5 occurred in the phloem companion cells. The ossut1 and ossut4 mutants presented a decrease of grain yield, implying important roles of OsSUTs in phloem loading. Based on these results, we conclude that rice uses the apoplastic loading as a major phloem loading strategy.


2021 ◽  
Author(s):  
Guohui Li ◽  
Chiyan Zhou ◽  
Zijun Yang ◽  
Chenhui Zhang ◽  
Qigen Dai ◽  
...  

2021 ◽  
Author(s):  
Richard Breia ◽  
Artur Conde ◽  
Hélder Badim ◽  
Ana Margarida Fortes ◽  
Hernâni Gerós ◽  
...  

Abstract Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant–pathogen interaction. For instance, several species from the Xanthomonas genus are able to upregulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of transcription-activator-like effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator, are also capable of increasing SWEET expression. However, the opposite behavior has been observed in some cases, as overexpression of the tonoplast AtSWEET2 during Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-cut role for SWEET transporters during plant–pathogen interactions has so far been difficult to define, as the metabolic signatures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This fuels the still ongoing scientific question: what roles can SWEETs play during plant–pathogen interaction? Likewise, the roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in biotic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their importance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.


1982 ◽  
Vol 69 (3) ◽  
pp. 734-739 ◽  
Author(s):  
Julia W. Maynard ◽  
William J. Lucas

Sign in / Sign up

Export Citation Format

Share Document