sucrose transport
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 49)

H-INDEX

32
(FIVE YEARS 2)

2022 ◽  
Vol 23 (2) ◽  
pp. 822
Author(s):  
Yu He ◽  
Ruifan Chen ◽  
Ying Yang ◽  
Guichan Liang ◽  
Heng Zhang ◽  
...  

Camellia oleifera is a widely planted woody oil crop with economic significance because it does not occupy cultivated land. The sugar-derived acetyl-CoA is the basic building block in fatty acid synthesis and oil synthesis in C. oleifera fruit; however, sugar metabolism in this species is uncharacterized. Herein, the changes in sugar content and metabolic enzyme activity and the transcriptomic changes during C. oleifera fruit development were determined in four developmental stages (CR6: young fruit formation; CR7: expansion; CR9: oil transformation; CR10: ripening). CR7 was the key period of sugar metabolism since it had the highest amount of soluble sugar, sucrose, and glucose with a high expression of genes related to sugar transport (four sucrose transporters (SUTs) or and one SWEET-like gene, also known as a sugar, will eventually be exported transporters) and metabolism. The significant positive correlation between their expression and sucrose content suggests that they may be the key genes responsible for sucrose transport and content maintenance. Significantly differentially expressed genes enriched in the starch and sucrose metabolism pathway were observed in the CR6 versus CR10 stages according to KEGG annotation. The 26 enriched candidate genes related to sucrose metabolism provide a molecular basis for further sugar metabolism studies in C. oleifera fruit.


2021 ◽  
Vol 22 (21) ◽  
pp. 12062
Author(s):  
Yumeng Cai ◽  
Ling Yin ◽  
Jie Wang ◽  
Wenjie Dong ◽  
Han Gao ◽  
...  

The sugar distribution mechanism in fruits has been the focus of research worldwide; however, it remains unclear. In order to elucidate the relevant mechanisms in grape berries, the expression, localization, function, and regulation of three sucrose transporters were studied in three representative Vitis varieties. Both SUC11 and SUC12 expression levels were positively correlated with sugar accumulation in grape berries, whereas SUC27 showed a negative relationship. The alignment analysis and sucrose transport ability of isolated SUCs were determined to reflect coding region variations among V. vinifera, V. amurensis Ruper, and V. riparia, indicating that functional variation existed in one SUT from different varieties. Furthermore, potentially oligomerized abilities of VvSUCs colocalized in the sieve elements of the phloem as plasma membrane proteins were verified. The effects of oligomerization on transport properties were characterized in yeast. VvSUC11 and VvSUC12 are high-affinity/low-capacity types of SUTs that stimulate each other by upregulating Vmax and Km, inhibiting sucrose transport, and downregulating the Km of VvSUC27. Thus, changes in the distribution of different SUTs in the same cell govern functional regulation. The activation and inhibition of sucrose transport could be achieved in different stages and tissues of grape development to achieve an effective distribution of sugar.


Author(s):  
Lulu Deng ◽  
Shaopeng Zhao ◽  
Guoling Yang ◽  
Shengnan Zhu ◽  
Jiang Tian ◽  
...  

2021 ◽  
Author(s):  
Urooj Fatima ◽  
Muthappa Senthil-Kumar

Depriving bacterial pathogens of sugars is a potential plant defense strategy. The relevance of SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS (SWEETs) in plant susceptibility to pathogens has been established, but their role in plant defense remains unknown. We identified Arabidopsis thaliana SWEETs (AtSWEETs) involved in defense against nonhost and host Pseudomonas syringae pathogens through reverse genetic screening of atsweet1-17 mutants. Double/triple mutant, complementation, and overexpression line analysis, and apoplastic sucrose estimation studies revealed that AtSWEET12 suppresses pathogen multiplication by limiting sucrose availability in the apoplast. Localization studies suggested that plant defense occurred via increased plasma membrane targeting of AtSWEET12 with concomitant AtSWEET11 protein reduction. Moreover, the heterooligomerization of AtSWEET11 and AtSWEET12 was involved in regulating sucrose transport. Our results highlight a PAMP-mediated defense strategy against foliar bacterial pathogens whereby plants control AtSWEET11-mediated sucrose efflux in the apoplast through AtSWEET12. We uncover a fascinating new mechanism of pathogen starvation as a broad-spectrum disease resistance mechanism in parallel with existing immune pathways.


2021 ◽  
Author(s):  
Honghai Zhu ◽  
Wei Hu ◽  
Yuxia Li ◽  
Jie Zou ◽  
Jiaqi He ◽  
...  

The formation of cotton fiber strength largely relies on continuous and steady sucrose supply to cellulose synthesis and is greatly impaired by drought. However, the effects of drought on sucrose import into fiber and its involvement in cellulose biosynthesis within fiber remain unclear. To end this, moisture deficiency experiments were conducted using two Gossypium hirsutum cultivars of Dexiamian 1 (drought-tolerant) and Yuzaomian 9110 (drought-sensitive). Fiber strength was significantly decreased under drought. The results of 13C isotope labeling indicated that drought notably reduced sucrose efflux from cottonseed coat to fiber, and this was caused by down-regulation of sucrose transporter genes (GhSWEET10 and GhSWEET15) in the outer cottonseed coat, finally leading to decreased sucrose accumulation in fiber. Further, under drought, the balance of sucrose allocation within fiber was disrupted by increasing the flow of sucrose into β-1,3-glucan synthesis and lignin synthesis but hindering that into cellulose synthesis in both cultivars. Additionally, glycolysis and starch synthesis were specifically enhanced by drought in Yuzaomian 9110, which further reduced the flow of sucrose into cellulose synthesis. Under drought, the cellulose deposition was decreased due to promoted cellulose degrading process in Dexiamian 1 and stunted cellulose synthesis in Yuzaomian 9110. Consequently, reduced cellulose content was measured in drought-stressed fibers for both cultivars. In summary, the inhibited cellulose accumulation caused by drought was mainly due to reduced sucrose translocation from the outer cottonseed coat to fiber, and less sucrose partitioned to cellulose synthesis pathway under the condition of intensified competition for sucrose by different metabolic pathways within fiber, finally degrading the fiber strength.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinglei Huang ◽  
Yiyan Zhang ◽  
Leilei Wang ◽  
Xinyi Dong ◽  
Weixin Hu ◽  
...  

Carbon and nitrogen antagonistically regulate multiple developmental processes. However, the molecular mechanism affecting nitrogen metabolism by sucrose transport remains poorly defined. Previously, we noted that Oryza sativa DNA BINDING WITH ONE FINGER 11 (OsDOF11) mediated sucrose transport by binding to the promoter regions of Sucrose Transporter 1 (SUT1), Oryza sativa Sugars Will Eventually be Exported Transporters 11 (OsSWEET11), and OsSWEET14. Here, we note that OsDOF11 promotes nitrogen uptake and then maintains the ratio of fresh weight to dry weight in seedling plants and the effective leaf blade at flowering stages. Mutants of the sucrose transporter gene OsSWEET14 displayed a phenotype similar to that of OsDOF11. By microarray analysis and qRT-PCR in OsDOF11 mutant plants, OsDOF11 affected the transcription level of amino acid metabolism-related genes. We further found that mainly amino acid contents were reduced in flag leaves but increased in seeds. Both sugar and organic nitrogen changes caused the ratio of fresh weight to dry weight to decrease in OsDOF11 mutant seedling plants and mature leaves, which might result in vigorous reduced metabolic activity and become less susceptible to stress. These results demonstrated that OsDOF11 affected nitrogen metabolism by sugar distribution in rice, which provided new insight that OsDOF11 coordinated with C and N balance to maintain plant growth activity.


2021 ◽  
Vol 8 (9) ◽  
pp. 201858
Author(s):  
Lihua Lin ◽  
Zhikai Zhang ◽  
Hongchi Tang ◽  
Yuan Guo ◽  
Bingqing Zhou ◽  
...  

A heterologous pathway for sucrose transport and metabolism was introduced into Clostridium beijerinckii to improve sucrose use for n -butanol production. The combined expression of StSUT1 , encoding a sucrose transporter from potato ( Solanum tuberosum ), and SUC2 , encoding a sucrose invertase from Saccharomyces cerevisiae , remarkably enhanced n -butanol production. With sucrose, sugarcane molasses and sugarcane juice as substrates, the C. beijerinckii strain harbouring StSUT1 and SUC2 increased acetone–butanol–ethanol production by 38.7%, 22.3% and 52.8%, respectively, compared with the wild-type strain. This is the first report to demonstrate enhanced sucrose fermentation due to the heterologous expression of a sucrose transporter and invertase in Clostridium . The metabolic engineering strategy used in this study can be widely applied in other microorganisms to enhance the production of high-value compounds from sucrose-based biomass.


2021 ◽  
Author(s):  
Lin-Bo Wu ◽  
Joon-Seob Eom ◽  
Reika Isoda ◽  
Chenhao Li ◽  
Si Nian Char ◽  
...  

SWEETs play important roles in intercellular sugar transport. Induction of SWEET sugar transporters by transcription activator-like effectors (TALe) of Xanthomonas ssp. is a key factor for bacterial leaf blight (BLB) infection of rice, cassava and cotton. Here, we identified the so far unknown OsSWEET11b with roles in male fertility and BLB susceptibility in rice. While single ossweet11a or b mutants were fertile, double mutants were sterile. Since clade III SWEETs can transport gibberellin (GA), a key hormone for rice spikelet fertility, sterility and BLB susceptibility might be explained by GA transport deficiencies. However, in contrast to the Arabidopsis homologs, OsSWEET11b did not mediate detectable GA transport. Fertility and susceptibility must therefore depend on SWEET11b-mediated sucrose transport. Ectopic induction of OsSWEET11b by designer TALe enables TALe-free Xanthomonas oryzae pv. oryzae (Xoo) to cause disease, identifying OsSWEET11b as a BLB susceptibility gene and demonstrating that the induction of host sucrose uniporter activity is key to virulence of Xoo. Notably, only three of now six clade III SWEETs are targeted by known Xoo strains from Asia and Africa. The identification of OsSWEET11b has relevance in the context of fertility and for protecting rice against emerging Xoo strains that evolve TALes to exploit OsSWEET11b.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yoon Kim ◽  
Sun-Ho Kim ◽  
Dong-Min Shin ◽  
Soo-Hwan Kim

ATBS1-INTERACTING FACTOR 2 (AIF2) is a non-DNA-binding basic-helix-loop-helix (bHLH) transcription factor. Here, we demonstrate that AIF2 negatively modulates brassinosteroid (BR)-induced, BRASSINAZOLE RESISTANT 1 (BZR1)-mediated pollen and seed formation. AIF2-overexpressing Arabidopsis plants (AIF2ox) showed defective pollen grains and seed production while two AIF2 knockout mutants, aif2-1 and aif2-1/aif4-1, displayed opposite phenotypes. Genes encoding BZR1-regulated positive factors of seed size determination (SHB1, IKU1, MINI3) were suppressed in AIF2ox and genes for negative factors (AP2 and ARF2) were enhanced. Surprisingly, BZR1-regulated pollen genes such as SPL, MS1, and TDF1 were aberrantly up-regulated in AIF2ox plants. This stage-independent abnormal expression may lead to a retarded and defective progression of microsporogenesis, producing abnormal tetrad microspores and pollen grains with less-effective pollen tube germination. Auxin plays important roles in proper development of flower and seeds: genes for auxin biosynthesis such as TCPs and YUCCAs as well as for positive auxin signalling such as ARFs were suppressed in AIF2ox flowers. Moreover, lipid biosynthesis- and sucrose transport-related genes were repressed, resulting in impaired starch accumulation. Contrarily, sucrose and BR repressed ectopic accumulation of AIF2, thereby increasing silique length and the number of seeds. Taken together, we propose that AIF2 is negatively involved in pollen development and seed formation, and that sucrose- and BR-induced repression of AIF2 positively promotes pollen production and seed formation in Arabidopsis.


Sign in / Sign up

Export Citation Format

Share Document