opposite behavior
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 77)

H-INDEX

17
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Ahmed Sedky ◽  
Atif Mossad Ali ◽  
H. Algarni

Abstract We report here the structural, FTIR, optical and dielectric properties of Zn1−xAlxO with x = 00.00 < x ≤ 0.20)). The wurtzite structure is conformed to all samples and the lattice constants, crystallite diameter, porosity and average crystalline size are generally decreased. The residual stress is compressive for pure samples, but it is changed to tensile for the doped samples. Interestingly, Debye temperature and elastic modulus are increased as x increases to 0.10, followed by a decrease at x = 0.20. Two different energy gaps Egh and Egl are apparent for each sample, corresponding of two transition absorption peaks. Interestingly, the ΔE = (Egh – Egl) ~ 0.60 for all samples. Further, the residual dielectric constant is decreased by increasing x to 0.10, followed by a sharp increase at x = 0.20 while the opposite behavior for (N/m*). The dielectric constant ε′ is slightly increased as x increases to 0.025, followed by a sharp increase as x increases to 0.20, as well as the ac conductivity σ/. The conduction is electronic for x ≤ 0.025 samples, but it is changed to hole with an increase of x to 0.20. The binding energy Wm was decreased as x increases to 0.20, but there is no exact trend against x for the behaviors of minimum hopping distance Rmin and density of localized states N. In addition, the density of states at Fermi level N (EF) has an optimum value at 195 KHz for all samples. The F-factor for solar cell design is increased as x increases to 0.10, but it is almost constant at x = 0.20. The Cole-Cole plot is a straight line for x = 0.00, a semicircle arc for x = 0.025 and a complete semicircle for x ≥ 0.05. The impedance resistance of grain Z\(g) and grain boundaries Z\(gb) are gradually decreased by increasing x to 0.20. These outcomes indicate that the addition of Al to ZnO shifts the mechanical, optical, and dielectric medium to higher values, which is strongly recommended for the design of optoelectronic and solar cell instruments.


2022 ◽  
Vol 18 ◽  
Author(s):  
Maria Yasin ◽  
Sadia Hina ◽  
Rahila Naz ◽  
Thabet Abdeljawad ◽  
Muhammad Sohail

Aims:: This article is intended to investigate and determine combined impact of Slip and Hall current on Peristaltic transmission of Magneto-hydrodynamic (MHD) Eyring-Powell fluid. Background: The hall term arises taking strong force-field under consideration. Velocity, thermal and concentration slip conditions are applied. Energy equation is modeled by considering Joule-thermal effect. To observe non-Newtonian behavior of fluid the constitutive equations of Eyring-Powell fluid is encountered. Objective: Flow is studied in a wave frame of reference travelling with velocity of wave. The mathematical modeling is done by utilizing adequate assumptions of long wavelength and low Reynolds number. Method: The closed form solution for momentum, temperature and concentration distribution is computed analytically by using regular perturbation technique for small fluid parameter(A). Results: Graphical results are presented and discussed in detail to analyze behavior of sundry parameters on flow quantities (i.e. velocity, temperature and concentration profile). It is noticed that Powell-Eyring fluid parameters (A,B) have a significant role on the outcomes. Conclusion: The fluid parameter A magnifies the velocity profile whereas, the other fluid parameter B shows the opposite behavior.


Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
Ana Jiménez-Cantizano ◽  
Pau Sancho-Galán ◽  
Gerardo F. Barbero ◽  
Víctor Palacios ◽  
Antonio Amores-Arrocha

Grapevine varieties can be identified genetically by microsatellite markers. However, these molecular markers are not available to discriminate between somatic mutations that give rise to clones. Therefore, the study of compounds with oenological interest could be used to identify variability in grapevine somatic variants. In this research, sugars (glucose, fructose), acids (tartaric and malic acid) and polyphenols (22 phenolic compounds, including 13 anthocyanins) were analyzed in grape berries of two somatic variants known with different names—‘Graciano’ and ‘Tintilla de Rota’—cultivated in the same vineyard under warm climate conditions. The organic acid results show significant differences between the performance of the two accessions. Regarding phenolic compound (excluding anthocyanins) content, significant differences were observed between the two accessions. Kaempferol, caftaric acid and epicatechin were the compounds responsible for the reported differences. Differences in anthocyanin content showed opposite behavior between ‘Tintilla de Rota’ and ‘Graciano’. In this sense, ‘Graciano’ accession showed an increase in all forms of anthocyanins, with a remarkable increment of peonidin 3-O-glucoside. Principal component analysis of polyphenolic compounds revealed clearly distinguished behaviors concerning these compounds, besides showing similar tendencies between the two accessions during the ripening stage. These results could allow for the discrimination of the two accessions into somatic variants highlighting their individual identity.


Author(s):  
Saif-ur- Rehman ◽  
Nazir Ahmad Mir ◽  
Muhammad Farooq ◽  
Naila Rafiq ◽  
Shakeel Ahmad

In this attempt, we investigate the mixed convection in Sutterby fluid flow based on boundary layer approximation. Heat transport analysis is composed of stratification and thermal radiative phenomena. The system of non-linear PDEs is transformed into coupled ODEs. Convergent series approximations are evaluated via homotopic technique. Influence of various pertinent parameters is sketched and graphically analyzed. It is found that horizontal velocity increments for higher mixed convection parameter. The radiation parameter has a similar relation with temperature whereas the stratification parameter shows opposite behavior for temperature field.


Author(s):  
Arash Bahrololoomi ◽  
Hubert K Bilan ◽  
Elizabeth J Podlaha

Abstract A composite electrode composed of electrodeposited, nickel-iron nanostructured clusters onto a glassy carbon (GC) disk electrode was used as a working electrode to detect methylene blue at concentrations below 10 μM. The Ni-Fe clusters were prepared by pulse electrodeposition and a lateral composition variation was observed reflective of a local pH change across the Ni-Fe feature. The applied potential for the detection of MB at a pH of 4 was determined through voltammetry and demonstrated using chronoamperometry and electrochemical impedance spectroscopy (EIS) where the adsorption of MB influenced both the capacitance, C, and ohmic resistance, Rs. A peak present in it1/2 vs t chronoamperometry plots decreased with lower MB bulk concentration, while in contrast, the RsC parameters determined from equivalent circuit models of EIS had the opposite behavior having a larger signal with lower MB concentration, and hence providing a way to increase the detection signal at lower MB concentration.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1490
Author(s):  
Taghreed H. Alarabi ◽  
Ahmed M. Rashad ◽  
A. Mahdy

The current analysis aims to exhibit the nanoparticles of Al2O3 + Cu-water hybrid nanofluid flow for Darcy–Forchheimer with heterogeneous–homogeneous chemical reactions and magnetic field aspects past a stretching or shrinking cylinder with Joule heating. This paper performed not only with the hybrid nanofluid but also the shape of Al2O3 and Cu nanoparticles. The model of single-phase hybrid nanofluid due to thermophysical features is utilized for the mathematical formulation. In the present exploration equal diffusions factors for reactants and auto catalyst are instituted. The system of governing equations has been simplified by invoking the similarity transformation. The numerical computations are invoked due to the function bvp4c of Matlab, with high non-linearity. Numerical outcomes illustrated that; sphere shape nanoparticles presented dramatic performance on heat transfer of hybrid nanofluid movement; an opposite behavior is noticed with lamina shape. The local Nusselt number strengthens as the transverse curvature factor becomes larger. In addition, the homogeneous–heterogeneous reactions factors lead to weaken concentration fluctuation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhongnian Yang ◽  
Jianhang Lv ◽  
Wei Shi ◽  
Chao Jia ◽  
Chu Wang ◽  
...  

AbstractThis paper presents an experimental investigation on the effect of freeze–thaw cycling on expansive soil slopes with different initial moisture contents. Clay soil from Weifang, China, was remolded and selected to build the expansive soil slope for the indoor slope model tests. A total of five freeze–thaw cycles were applied to the three expansive soil slopes with different moisture contents ranging from 20 to 40%. Variations of the crack developments, displacements, soil pressures and moisture contents of the expansive soil slope with different initial moisture contents during the freeze–thaw cycling were reported and discussed. The results indicate that higher moisture contents can slow the development of cracks and that the soil pressure increases with decreasing temperature. The soil pressure of slope decreases after freeze–thaw cycle, and the change amplitude of soil pressure after freeze–thaw is proportional to water content. The slopes with a moisture content of 20% and 30% shrinks during freezing and expands during thawing, which was named ES-FSTE Model, while the slope with a 40% moisture content shows the opposite behavior. During freeze–thaw cycles, moisture migrates to slope surface. As initial moisture contents increase, the soil heat transfer rate and bearing capacity decreases after five freeze–thaw cycling.


Author(s):  
Chaim I. Garfinkel ◽  
Peter Hitchcock

Abstract An idealised model is used to examine the tropospheric response to sudden stratospheric warmings (SSWs), by imposing transient stratospheric momentum torques tailored to mimic the wave-forcing impulse associated with spontaneously-occurring SSWs. Such an approach enables us to examine both the ∼2-3-week forcing stage of an SSW during which there is anomalous stratospheric wave-activity convergence, as well as the recovery stage during which the wave forcing abates and the stratosphere radiatively recovers over 2-3 months. It is argued that applying a torque is better suited than a heating perturbation for examining the response to SSWs, due to the meridional circulation that is induced to maintain thermal-wind balance (i.e., the ‘Eliassen adjustment’); an easterly torque yields downwelling at high latitudes and equatorward flow below, similar to the wave-induced circulation that occurs during spontaneously-occurring SSWs, whereas a heating perturbation yields qualitatively opposite behavior and thus cannot capture the initial SSW evolution. During the forcing stage, the meridional circulation in response to an impulse comparable to the model’s internal variability is able to penetrate down to the surface and drive easterly-wind anomalies via Coriolis torques acting on the anomalous equatorward flow. During the recovery stage, after which the tropospheric flow has already responded, the meridional circulation associated with the stratosphere’s radiative recovery provides the persistent stratospheric forcing that drives the high-latitude easterly anomalies, which is then augmented by synoptic-wave feedbacks that drive and amplify the annular-mode response. In comparison, planetary waves are found to play a relatively small role.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2158
Author(s):  
Mirela Kopjar ◽  
Ivana Buljeta ◽  
Ivana Jelić ◽  
Vanja Kelemen ◽  
Josip Šimunović ◽  
...  

Plant-based protein matrices can be used for the formulation of delivery systems of cinnamic acid. Pumpkin, pea and almond protein matrices were used for the formulation of dried complexes. The matrices were used in varying amounts (1%, 2%, 5% and 10%) whilst the amount of cinnamic acid was maintained constant. The obtained complexes were analyzed by HPLC, DSC and FTIR-ATR. The highest amounts of cinnamic acid were determined on complexes prepared by the lowest amounts of protein matrices, regardless of their type. The highest affinity for cinnamic acid adsorption was determined for the pumpkin protein matrix. DSC analysis revealed that adsorption of cinnamic acid caused an increase in the thermal stability of the almond protein matrix, while the other two matrices had the opposite behavior. The complexation of protein matrices and cinnamic acid was proven by recording the IR spectra. The obtained complexes could have potential applications in food products to achieve enrichment with cinnamic acid as well as proteins.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 315
Author(s):  
Gastón Gutiérrez-Gamboa ◽  
Nicolás Torres-Huerta ◽  
Miguel Araya-Alman ◽  
Nicolás Verdugo-Vásquez ◽  
Yerko Moreno-Simunovic ◽  
...  

(1) Background: Currently, some ampelographic methods are developing in order to identify grapevine varieties. For this purpose, morpho-colorimetric parameters in leaves have been analyzed by digital imagen analysis, but some environmental conditions may affect their determinations. (2) Methods: A research study was conducted to characterize leaf morpho-colorimetric parameters in five grapevine varieties growing under different plant water status and to discriminate them under these conditions. Leaves were collected in vines, and twelve leaf morpho-colorimetric and fractal dimension variables were assessed. (3) Results: Merlot presented the highest values of perimeter and area to perimeter ratio in leaves and higher leaf area than Chardonnay in both plant water conditions. Most of the leaf morpho-colorimetric variables allowed discriminating the grapevine varieties under the contrasted hydric conditions. Under non-water stress, Carmenère was not related to any measured parameters. Merlot was positively related to most of the leaf morphometric parameters, whereas Chardonnay presented the opposite behavior. RGB color system variables allowed discriminating the grapevine varieties under water stress conditions, and Sauvignon Blanc was not related to any measured parameter. Chardonnay and Pinot Noir were positively related to green color and negatively related to most of the leaf morphometric parameters, whereas Merlot showed the opposite behavior. (4) Conclusions: Leaf morpho-colorimetric and fractal dimension parameters were affected by plant water stress and more variables should be incorporated into the new ampelographic methods in order to characterize leaf morpho-colorimetric parameters of the different grapevine varieties more clearly.


Sign in / Sign up

Export Citation Format

Share Document