pathogenesis related
Recently Published Documents


TOTAL DOCUMENTS

1135
(FIVE YEARS 246)

H-INDEX

89
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Alok Sharma ◽  
Himanshu Sharma ◽  
Ruchika Rajput ◽  
Ashutosh Pandey ◽  
Santosh Kumar Upadhyay

Thaumatin-like proteins (TLPs) are related to pathogenesis-related-5 (PR-5) family and involved in stress response. Herein, a total of 93 TLP genes were identified in the genome of Triticum aestivum. Further, we identified 26, 27, 39, and 37 TLP genes in the Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Zea mays genomes for comparative characterization, respectively. They could be grouped into small and long TLPs with conserved thaumatin signature motif. Tightly clustered genes exhibited conserved gene and protein structure. The physicochemical analyses suggested significant differences between small and long TLPs. Evolutionary analyses suggested the role of duplication events and purifying selection in the expansion of the TLP gene family. Expression analyses revealed the possible roles of TLPs in plant development and abiotic and fungal stress response. Recombinant expression of TaTLP2-B in Saccharomyces cerevisiae provided significant tolerance against cold, heat, osmotic, and salt stresses. The results depicted the importance of TLPs in cereal crops that would be highly useful in future crop improvement programs.


2022 ◽  
Vol 23 (1) ◽  
pp. 511
Author(s):  
Yanjie Zhang ◽  
Yu Ma ◽  
Ruiqi Liu ◽  
Guanglin Li

K-homologous (KH) family is a type of nucleic acid-binding protein containing the KH domain and has been found to affect splicing and transcriptional regulation. However, KH family genes haven’t been investigated in plant species systematically. In this study, we identified 30 genes that belonged to the KH family based on HMM of the KH domain in Arabidopsis thaliana. Phylogenetic tree analysis showed that the KH family is grouped into three subgroups. Synteny analysis showed that AtKH9 and AtKH29 have the conserved synteny relationship between A. thaliana and the other five species. The AtKH9 and AtKH29 were located in the cytoplasm and nucleus. The seed germination rates of the mutants atkh9 and atkh29 were higher than wild-type after abscisic acid (ABA) and salicylic acid (SA) treatments. In addition, the expression of ABA-related genes, such as ABRE-binding factor 2 (ABF2), ABRE-binding factor 4 (ABF4), and delta 1-pyrroline-5-carboxylate synthase (P5CS), and an SA-related gene pathogenesis-related proteins b (PR1b) were downregulated after ABA and SA treatments, respectively. These results suggested that atkh9 and atkh29 mutants inhibit the effect of ABA and SA on seed germination. In conclusion, our results provide valuable information for further exploration of the function of KH family genes and propose directions and ideas for the identification and characterization of KH family genes in other plants.


Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Huihui Zhao ◽  
Xiaobing Wang ◽  
Wei Wang

Tomato (Solanum lycopersicum), as an important economical vegetable, is often infected with Rhizoctonia solani, which results in a substantial reduction in production. Therefore, the molecular mechanism of biocontrol microorganisms assisting tomato to resist pathogens is worth exploring. Here, we use Bacillus amyloliquefaciens SN16-1 as biocontrol bacteria, and employed RNA-Seq technology to study tomato gene and defense-signaling pathways expression. Gene Ontology (GO) analyses showed that an oxidation-reduction process, peptidase regulator activity, and oxidoreductase activity were predominant. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that phenylpropanoid biosynthesis, biosynthesis of unsaturated fatty acids, aldosterone synthesis and secretion, and phototransduction were significantly enriched. SN16-1 activated defenses in the tomato via systemic-acquired resistance (which depends on the salicylic acid signaling pathway), rather than classic induction of systemic resistance. The genes induced by SN16-1 included transcription factors, plant hormones (ethylene, auxin, abscisic acid, and gibberellin), receptor-like kinases, heat shock proteins, and defense proteins. SN16-1 rarely activated pathogenesis-related proteins, but most pathogenesis-related proteins were induced in the presence of the pathogens. In addition, the molecular mechanisms of the response of tomatoes to SN16-1 and R. solani RS520 were significantly different.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12617
Author(s):  
Yarui Wei ◽  
Shuliang Zhao ◽  
Na Liu ◽  
Yuxing Zhang

The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) plays a master regulatory role in the salicylic acid (SA) signal transduction pathway and plant systemic acquired resistance (SAR). Members of the NPR1-like gene family have been reported to the associated with biotic/abiotic stress in many plants, however the genome-wide characterization of NPR1-like genes has not been carried out in Chinese pear (Pyrus bretschneideri Reld). In this study, a systematic analysis was conducted on the characteristics of the NPR1-like genes in P. bretschneideri Reld at the whole-genome level. A total nine NPR1-like genes were detected which eight genes were located on six chromosomes and one gene was mapped to scaffold. Based on the phylogenetic analysis, the nine PbrNPR1-like proteins were divided into three clades (Clades I–III) had similar gene structure, domain and conserved motifs. We sorted the cis-acting elements into three clades, including plant growth and development, stress responses, and hormone responses in the promoter regions of PbrNPR1-like genes. The result of qPCR analysis showed that expression diversity of PbrNPR1-like genes in various tissues. All the genes were up-regulated after SA treatment in leaves except for Pbrgene8896. PbrNPR1-like genes showed circadian rhythm and significantly different expression levels after inoculation with Alternaria alternata. These findings provide a solid insight for understanding the functions and evolution of PbrNPR1-like genes in Chinese pear.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2718
Author(s):  
Alejandro Ayala-Doñas ◽  
Pedro Gómez ◽  
Miguel de Cara-García

Phytophtora capsici causes major diseases in cucurbit crops worldwide. In this study, we inoculated this pathogen into Cucurbita pepo subsp. pepo susceptible MUCU-16 and C. moschata tolerant M63. The gene expression of plant pathogenesis-related proteins chitinase (CpChiIV), lignin-forming peroxidase (CpLPOX), and defensin (CpDEF) and hormone-related enzymes salicylic acid (CpPAL) and ethylene (CpACO) was analyzed for two weeks post-inoculation in root and crown tissues. Differentially expressed genes were found between genotypes, tissues, days post-inoculation, and inoculated/non-inoculated samples. After inoculation, CpPAL and CpChiIV (crown) were downregulated in MUCU-16, while CpLPOX and CpDEF were upregulated in M63. In inoculated samples, higher expression changes were presented on days 10–14 than on day 3 for CpACO, CpLPOX, and CpDEF genes. Overexpression was higher for CpDEF compared to the other tested genes, indicating good suitability as a marker of biotic stress. The overexpression of CpDEF was higher in crown than in roots for both inoculated genotypes. The basal expression of CpPAL and CpDEF was higher in MUCU-16, but after inoculation, CpPAL and CpDEF gene expression were higher in M63. These changes suggest an association between CpDEF upregulation and tolerance, and between CpPAL downregulation and susceptibility.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2647
Author(s):  
Yilin Zhang ◽  
Wei Chen ◽  
Xiaohui Sang ◽  
Ting Wang ◽  
Haiyan Gong ◽  
...  

(1) Background: Plants respond to pathogen challenge by activating a defense system involving pathogenesis-related (PR) proteins. The PR-5 family includes thaumatin, thaumatin-like proteins (TLPs), and other related proteins. TLPs play an important role in response to biotic and abiotic stresses. Many TLP-encoding genes have been identified and functionally characterized in the model plant species. (2) Results: We identified a total of 90 TLP genes in the G. barbadense genome. They were phylogenetically classified into 10 subfamilies and distributed across 19 chromosomes and nine scaffolds. The genes were characterized by examining their exon–intron structures, promoter cis-elements, conserved domains, synteny and collinearity, gene family evolution, and gene duplications. Several TLP genes were predicted to be targets of miRNAs. Investigation of expression changes of 21 GbTLPs in a G. barbadense cultivar (Hai7124) resistance to Verticillium dahliae revealed 13 GbTLPs being upregulated in response to V. dahliae infection, suggesting a potential role of these GbTLP genes in disease response. (3) Conclusions: The results of this study allow insight into the GbTLP gene family, identify GbTLP genes responsive to V. dahliae infection, and provide candidate genes for future studies of their roles in disease resistance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nobuaki Ishihama ◽  
Seung-won Choi ◽  
Yoshiteru Noutoshi ◽  
Ivana Saska ◽  
Shuta Asai ◽  
...  

AbstractNonsteroidal anti-inflammatory drugs (NSAIDs), including salicylic acid (SA), target mammalian cyclooxygenases. In plants, SA is a defense hormone that regulates NON-EXPRESSOR OF PATHOGENESIS RELATED GENES 1 (NPR1), the master transcriptional regulator of immunity-related genes. We identify that the oxicam-type NSAIDs tenoxicam (TNX), meloxicam, and piroxicam, but not other types of NSAIDs, exhibit an inhibitory effect on immunity to bacteria and SA-dependent plant immune response. TNX treatment decreases NPR1 levels, independently from the proposed SA receptors NPR3 and NPR4. Instead, TNX induces oxidation of cytosolic redox status, which is also affected by SA and regulates NPR1 homeostasis. A cysteine labeling assay reveals that cysteine residues in NPR1 can be oxidized in vitro, leading to disulfide-bridged oligomerization of NPR1, but not in vivo regardless of SA or TNX treatment. Therefore, this study indicates that oxicam inhibits NPR1-mediated SA signaling without affecting the redox status of NPR1.


Planta ◽  
2021 ◽  
Vol 255 (1) ◽  
Author(s):  
Kentaro Fujita ◽  
Soichiro Asuke ◽  
Erika Isono ◽  
Ryouhei Yoshihara ◽  
Yuichi Uno ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaojie Zhao ◽  
Weishuai Bi ◽  
Shuqing Zhao ◽  
Jun Su ◽  
Mengyu Li ◽  
...  

Plant apoplast serves as the frontier battlefield of plant defense in response to different types of pathogens. Many pathogenesis-related (PR) proteins are accumulated in apoplastic space during the onset of plant–pathogen interaction, where they act to suppress pathogen infection. In this study, we found the expression of Triticum aestivum lipid transfer protein 3 (TaLTP3) gene was unregulated during incompatible interaction mediated by leaf rust resistance genes Lr39/41 at the early infection stage. Stable transgenic wheat lines overexpressing TaLTP3 exhibited enhanced resistance to leaf rust pathogen Puccinia triticina. Transcriptome analysis revealed that overexpression of TaLTP3 specifically activated the transcription of pathogenesis-related protein 1a (TaPR1a) and multiple plant hormone pathways, including salicylic acid (SA), jasmonic acid (JA), and auxin, in response to the infection of the model bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Further investigation indicated that TaLTP3 physically associated with wheat TaPR1a protein in the apoplast. Transgenic wheat lines overexpressing TaLTP3 and TaPR1a showed higher accumulations of reactive oxygen species (ROS) during plant defense responses. All these findings suggested that TaLTP3 is involved in wheat resistance against leaf rust pathogen infection and forming a TaLTP3-TaPR1a complex in apoplast against this pathogen, which provides new insights into the functional roles of PR proteins.


Sign in / Sign up

Export Citation Format

Share Document