plant pathogen interaction
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 107)

H-INDEX

18
(FIVE YEARS 4)

Author(s):  
Isabel Fuenzalida-Valdivia ◽  
Maria Victoria Gangas ◽  
Diego Zavala ◽  
Ariel Herrera-Vásquez ◽  
Fabrice Roux ◽  
...  

Here, we report the genome sequence of the P. syringae strain RAYR-BL, isolated from natural accessions of Arabidopsis plants. The draft genome sequence consists of 5.85 Mbp assembled in 110 contigs. The study of P. syringae RAYR-BL is a valuable tool to investigate molecular features of plant-pathogen interaction under environmental conditions.


2022 ◽  
Vol 23 (1) ◽  
pp. 508
Author(s):  
Jinlong Zhang ◽  
Mingxia Zhou ◽  
Wei Liu ◽  
Jiajun Nie ◽  
Lili Huang

Kiwifruit canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive pathogen that globally threatens the kiwifruit industry. Understanding the molecular mechanism of plant-pathogen interaction can accelerate applying resistance breeding and controlling plant diseases. All known effectors secreted by pathogens play an important role in plant-pathogen interaction. However, the effectors in Psa and their function mechanism remain largely unclear. Here, we successfully identified a T3SS effector HopAU1 which had no virulence contribution to Psa, but could, however, induce cell death and activate a series of immune responses by agroinfiltration in Nicotiana benthamiana, including elevated transcripts of immune-related genes, accumulation of reactive oxygen species (ROS), and callose deposition. We found that HopAU1 interacted with a calcium sensing receptor in N. benthamiana (NbCaS) as well as its close homologue in kiwifruit (AcCaS). More importantly, silencing CaS by RNAi in N. benthamiana greatly attenuated HopAU1-triggered cell death, suggesting CaS is a crucial component for HopAU1 detection. Further researches showed that overexpression of NbCaS in N. benthamiana significantly enhanced plant resistance against Sclerotinia sclerotiorum and Phytophthora capsici, indicating that CaS serves as a promising resistance-related gene for disease resistance breeding. We concluded that HopAU1 is an immune elicitor that targets CaS to trigger plant immunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kang Ning ◽  
Mengzhi Li ◽  
Guangfei Wei ◽  
Yuxin Zhou ◽  
Guozhuang Zhang ◽  
...  

Panax notoginseng (Panax notoginseng (Burk.) F.H. Chen), a plant of high medicinal value, is severely affected by root rot during cultivation. Here, we generated a reference genome of P. notoginseng, with a contig N50 size of 241.268 kb, and identified 66 disease-resistance genes (R-genes) as candidate genes for breeding disease-resistant varieties. We then investigated the molecular mechanism underlying the responses of resistant and susceptible P. notoginseng genotypes to Fusarium oxysporum infection at six time points by RNA-seq. Functional analysis of the genes differentially expressed between the two genotypes indicated that genes involved in the defense response biological process like hormone transduction and plant-pathogen interaction are continuously and highly expressed in resistant genotype during infection. Moreover, salicylic acid and jasmonic acid levels gradually increased during infection in the resistant genotype. Coexpression analysis showed that PnWRKY22 acts as a hub gene in the defense response of the resistant genotype. Finally, transiently overexpressing PnWRKY22 increased salicylic acid levels in P. notoginseng leaves. Our findings provide a theoretical basis for studying root rot resistance in P. notoginseng.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaochun Wei ◽  
Yingying Zhang ◽  
Yanyan Zhao ◽  
Zhengqing Xie ◽  
Mohammad Rashed Hossain ◽  
...  

Plasmodiophora brassicae, an obligate biotrophic pathogen-causing clubroot disease, can seriously affect Brassica crops worldwide, especially Chinese cabbage. Understanding the transcriptome and metabolome profiling changes during the infection of P. brassicae will provide key insights in understanding the defense mechanism in Brassica crops. In this study, we estimated the phytohormones using targeted metabolome assays and transcriptomic changes using RNA sequencing (RNA-seq) in the roots of resistant (BrT24) and susceptible (Y510-9) plants at 0, 3, 9, and 20 days after inoculation (DAI) with P. brassicae. Differentially expressed genes (DEGs) in resistant vs. susceptible lines across different time points were identified. The weighted gene co-expression network analysis of the DEGs revealed six pathways including “Plant–pathogen interaction” and “Plant hormone signal transduction” and 15 hub genes including pathogenic type III effector avirulence factor gene (RIN4) and auxin-responsive protein (IAA16) to be involved in plants immune response. Inhibition of Indoleacetic acid, cytokinin, jasmonate acid, and salicylic acid contents and changes in related gene expression in R-line may play important roles in regulation of clubroot resistance (CR). Based on the combined metabolome profiling and hormone-related transcriptomic responses, we propose a general model of hormone-mediated defense mechanism. This study definitely enhances our current understanding and paves the way for improving CR in Brassica rapa.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoying Pan ◽  
Junbiao Chen ◽  
Aiguo Yang ◽  
Qinghua Yuan ◽  
Weicai Zhao ◽  
...  

Bacterial wilt (BW) caused by Ralstonia solanacearum (R. solanacearum), is a vascular disease affecting diverse solanaceous crops and causing tremendous damage to crop production. However, our knowledge of the mechanism underlying its resistance or susceptibility is very limited. In this study, we characterized the physiological differences and compared the defense-related transcriptomes of two tobacco varieties, 4411-3 (highly resistant, HR) and K326 (moderately resistant, MR), after R. solanacearum infection at 0, 10, and 17 days after inoculation (dpi). A total of 3967 differentially expressed genes (DEGs) were identified between the HR and MR genotypes under mock condition at three time points, including1395 up-regulated genes in the HR genotype and 2640 up-regulated genes in the MR genotype. Also, 6,233 and 21,541 DEGs were induced in the HR and MR genotypes after R. solanacearum infection, respectively. Furthermore, GO and KEGG analyses revealed that DEGs in the HR genotype were related to the cell wall, starch and sucrose metabolism, glutathione metabolism, ABC transporters, endocytosis, glycerolipid metabolism, and glycerophospholipid metabolism. The defense-related genes generally showed genotype-specific regulation and expression differences after R. solanacearum infection. In addition, genes related to auxin and ABA were dramatically up-regulated in the HR genotype. The contents of auxin and ABA in the MR genotype were significantly higher than those in the HR genotype after R. solanacearum infection, providing insight into the defense mechanisms of tobacco. Altogether, these results clarify the physiological and transcriptional regulation of R. solanacearum resistance infection in tobacco, and improve our understanding of the molecular mechanism underlying the plant-pathogen interaction.


2021 ◽  
Author(s):  
Muhammad Junaid Yousaf ◽  
Anwar Hussain ◽  
Amjad Iqbal

Abstract Phyto-signalling molecules are minute, but tangible that has rigorous roles in any plant-pathogen interaction. Certainly, most of the pathogen alters their biosynthesis, transport, degradation and cellular signalling responses to pave their virulence. Therefore, the gene expressions of such molecules with their correlated defense mechanisms were analysed in Arabidopsis thaliana against Erysiphe orontii (a potential biotroph), Botrytis cinerea (a potential necrotroph), Pseudomonas syringae (a bacterial hemibiotroph), and Phytophthora infestans (a fungal hemibiotroph) using molecular biology/ system biology techniques. The findings strongly suggested that each pathogen has its own unique infection strategy based on up-regulation and down-regulation of host phyto-signalling genes. Our studies also explored four basic pathogenic infection maps based on cross linking phyto-signalling molecules.


2021 ◽  
Vol 7 (12) ◽  
pp. 1024
Author(s):  
Fengxin Dong ◽  
Yihan Wang ◽  
Ming Tang

Poplars can be harmed by poplar canker. Inoculation with mycorrhizal fungi can improve the resistance of poplars to canker, but the molecular mechanism is still unclear. In this study, an aseptic inoculation system of L. bicolor–P. trichocarpa–B. dothidea was constructed, and transcriptome analysis was performed to investigate regulation by L. bicolor of the expression of genes in the roots of P. trichocarpa during the onset of B. dothidea infection, and a total of 3022 differentially expressed genes (DEGs) were identified. Weighted correlation network analysis (WGCNA) was performed on these DEGs, and 661 genes’ expressions were considered to be affected by inoculation with L. bicolor and B. dothidea. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these 661 DEGs were involved in multiple pathways such as signal transduction, reactive oxygen metabolism, and plant-pathogen interaction. Inoculation with L. bicolor changed the gene expression pattern of the roots, evidencing its involvement in the disease resistance response of P. trichocarpa. This research reveals the mechanism of L. bicolor in inducing resistance to canker of P. trichocarpa at the molecular level and provides a theoretical basis for the practical application of mycorrhizal fungi to improve plant disease resistance.


2021 ◽  
Author(s):  
Maria Gabriela Fontanetti Rodrigues ◽  
Ana Carolina Firmino ◽  
Juliano Jorge Valentim ◽  
Bruno Ettore Pavan ◽  
Antonio Flávio Arruda Ferreira ◽  
...  

Abstract Brazil is the largest fig producer in South America, but the Brazilian commercial fig tree cultivation is based on the planting of a single cultivar, ‘Roxo-de-Valinhos’, resulting in serious problems related to diseases. Since there are epigenetic variations in the plant-pathogen interaction, mainly through gene regulation, the aim of this study was to carry out the in vivo characterization of fig accessions through the analysis of the natural root-knot nematode and leaf rust incidence correlated to its epigenomic profile, in order to support conservation works and genetic improvement. Regarding the analysis of the presence of nematodes, it was observed that all plants were attacked by this pathogen, and the identification of Meloidogyne incognita as the root-knot nematode species was confirmed. However, the rust incidence and the global genomic methylation content where statistical different between evaluated accessions. The joint analysis of data showed that methylation and the leaf rust incidence, when observed in the same phenological phase of plants, are correlated, presenting evidences of the same factorial pressure loads in genotypes, with the premise of similar behavior in these genotypes. Biotic factors are also responsible for changes in the DNA methylation of plants, demonstrating a positive role in promoting plant defense.


2021 ◽  
Vol 22 (22) ◽  
pp. 12278
Author(s):  
Huishu Yan ◽  
Huawei Shi ◽  
Chengmei Hu ◽  
Mingzhao Luo ◽  
Chengjie Xu ◽  
...  

Nitrogen plays a crucial role in wheat growth and development. Here, we analyzed the tolerance of wheat strains XM26 and LM23 to low-nitrogen stress using a chlorate sensitivity experiment. Subsequently, we performed transcriptome analyses of both varieties exposed to low-nitrogen (LN) and normal (CK) treatments. Compared with those under CK treatment, 3534 differentially expressed genes (DEGs) were detected in XM26 in roots and shoots under LN treatment (p < 0.05, and |log2FC| > 1). A total of 3584 DEGs were detected in LM23. A total of 3306 DEGs, including 863 DEGs in roots and 2443 DEGs in shoots, were specifically expressed in XM26 or showed huge differences between XM26 and LM23 (log2FC ratio > 3). These were selected for gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The calcium-mediated plant–pathogen interaction, MAPK signaling, and phosphatidylinositol signaling pathways were enriched in XM26 but not in LM23. We also verified the expression of important genes involved in these pathways in the two varieties using qRT-PCR. A total of 156 transcription factors were identified among the DEGs, and their expression patterns were different between the two varieties. Our findings suggest that calcium-related pathways play different roles in the two varieties, eliciting different tolerances to low-nitrogen stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Righetti ◽  
Chiara Dall’Asta ◽  
Luigi Lucini ◽  
Paola Battilani

Fumonisin-contaminated maize (Zea mays L.) products are a major health concern because of their toxic effects in humans and animals. Breeding maize for increased mycotoxin resistance is one of the key sustainable strategies for mitigating the effects of fumonisin contamination. Recent studies suggest a link between fumonisin accumulation and plant lipid and oxylipin profiles. However, the data collected so far do not reveal a cause-and-effect relationship. In this study, to decipher the multifactorial nature of mycotoxin resistance and plant–pathogen interaction mechanisms, we examined the oxylipin and complex lipid profiles of two maize hybrids (H21 and H22, the latter showing significantly lower FBs content) grown in the open field in two locations over 3years. Untargeted ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight (UHPLC-Q-TOF), together with chemometrics analysis, successfully distinguished between the two hybrids as having low- and high-level fumonisin contamination. Considering that H21 and H22 were exposed to the same environmental factors, the higher activation of lipid signaling systems in H22 suggests that other routes are enabled in the less susceptible hybrids to limit fumonisin B (FB) accumulation. Our results highlighted the crucial role played by oxylipin and sphingolipid signaling in modulating the complex maize response to F. verticillioides infection. Overall, our results returned a global view on the changes in lipid metabolites related to fumonisin accumulation under open field conditions, and revealed a strong activation of the lipid signaling cascade in maize in the presence of FB1.


Sign in / Sign up

Export Citation Format

Share Document