Faculty Opinions recommendation of Spectral inference reveals principal cone-integration rules of the zebrafish inner retina.

Author(s):  
Gordon Fain
2021 ◽  
Author(s):  
Philipp Bartel ◽  
Takeshi Yoshimatsu ◽  
Filip K Janiak ◽  
Tom Baden

In the vertebrate retina, bipolar cells integrate the signals from different cone types at two main sites: directly, via dendritic inputs in the outer retina, and indirectly, via axonal inputs in the inner retina. Of these, the functional wiring of the indirect route, involving diverse amacrine cell circuits, remains largely uncharted. However, because cone-photoreceptor types differ in their spectral sensitivities, insights into the total functional cone-integration logic of bipolar cell might be gained by linking spectral responses across these two populations of neurons. To explore the feasibility of such a "spectral-circuit-mapping" approach, we here recorded in vivo responses of bipolar cell presynaptic terminals in larval zebrafish to widefield but spectrally resolved flashes of light. We then mapped the results onto the previously established spectral sensitivity functions of the four cones. We find that this approach could explain ~95% of the spectral and temporal variance of bipolar cell responses by way of a simple linear model that combined weighted inputs from the cones with four stereotyped temporal components. This in turn revealed several notable integration rules of the inner retina. Overall, bipolar cells were dominated by red-cone inputs, often alongside equal sign inputs from blue- and green-cones. In contrast, UV-cone inputs were uncorrelated with those of the remaining cones. This led to a new axis of spectral opponency which was mainly set-up by red-/green-/blue-cone "Off" circuits connecting to "natively-On" UV-cone circuits in the outermost fraction of the inner plexiform layer – much as how key colour opponent circuits are established in mammals. Beyond this, and despite substantial temporal diversity that was not present in the cones, bipolar cell spectral tunings were surprisingly simple. They either approximately resembled both opponent and non-opponent spectral motifs already present in the cones or exhibited a stereotyped non-opponent broadband response. In this way, bipolar cells not only preserved the efficient spectral representations in the cones, but also diversified them to set up a total of six dominant spectral motifs which included three axes of spectral opponency. More generally, our results contribute to an emerging understanding of how retinal circuits for colour vision in ancestral cone-tetrachromats such as zebrafish may be linked to those found in mammals.


2021 ◽  
Author(s):  
Philipp Bartel ◽  
Takeshi Yoshimatsu ◽  
Filip K. Janiak ◽  
Tom Baden

2007 ◽  
Vol 7 (3) ◽  
pp. 239-254 ◽  
Author(s):  
I.H. Sloan

Abstract Finite-order weights have been introduced in recent years to describe the often occurring situation that multivariate integrands can be approximated by a sum of functions each depending only on a small subset of the variables. The aim of this paper is to demonstrate the danger of relying on this structure when designing lattice integration rules, if the true integrand has components lying outside the assumed finiteorder function space. It does this by proving, for weights of order two, the existence of 3-dimensional lattice integration rules for which the worst case error is of order O(N¯½), where N is the number of points, yet for which there exists a smooth 3- dimensional integrand for which the integration rule does not converge.


2000 ◽  
Vol 84 (2) ◽  
pp. 666-676 ◽  
Author(s):  
Jiu-Lin Du ◽  
Xiong-Li Yang

γ-Aminobutyric acid (GABA) receptors on retinal bipolar cells (BCs) are highly relevant to spatial and temporal integration of visual signals in the outer and inner retina. In the present work, subcellular localization and complements of GABAA and GABACreceptors on BCs were investigated by whole cell recordings and local drug application via multi-barreled puff pipettes in the bullfrog retinal slice preparation. Four types of the BCs (types 1–4) were identified morphologically by injection of Lucifer yellow. According to the ramification levels of the axon terminals and the responses of these cells to glutamate (or kainate) applied at their dendrites, types 1 and 2 of BCs were supposed to be off type, whereas types 3 and 4 of BCs might be on type. Bicuculline (BIC), a GABAA receptor antagonist, and imidazole-4-acetic acid (I4AA), a GABAC receptor antagonist, were used to distinguish GABA receptor-mediated responses. In all BCs tested, not only the axon terminals but also the dendrites showed high GABA sensitivity mediated by both GABAA and GABACreceptors. Subcellular localization and complements of GABAA and GABAC receptors at the dendrites and axon terminals were highly related to the dichotomy of offand on BCs. In the case of off BCs, GABAA receptors were rather evenly distributed at the dendrites and axon terminals, but GABAC receptors were predominantly expressed at the axon terminals. Moreover, the relative contribution of GABAC receptors to the axon terminals was prevalent over that of GABAA receptors, while the situation was reversed at the dendrites. In the case of on BCs, GABAA and GABAC receptors both preferred to be expressed at the axon terminals; relative contributions of these two GABA receptor subtypes to both the sites were comparable, while GABAC receptors were much less expressed than GABAA receptors. GABAA, but not GABAC receptors, were expressed clusteringly at axons of a population of BCs. In a minority of BCs, I4AA suppressed the GABAC responses at the dendrites, but not at the axon terminal, implying that the GABAC receptors at these two sites may be heterogeneous. Taken together, these results suggest that GABAA and GABAC receptors may play different roles in the outer and inner retina and the differential complements of the two receptors on off and on BCs may be closely related to physiological functions of these cells.


2013 ◽  
Vol 113 ◽  
pp. 19-25 ◽  
Author(s):  
Yuta Ohno ◽  
Shuichi Makita ◽  
Masamitsu Shimazawa ◽  
Kazuhiro Tsuruma ◽  
Yoshiaki Yasuno ◽  
...  

Retina ◽  
2015 ◽  
Vol 35 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Hyun Seung Yang ◽  
Jee Taek Kim ◽  
Soo Geun Joe ◽  
Joo Yong Lee ◽  
Young Hee Yoon

1971 ◽  
Vol 8 (3) ◽  
pp. 497-508 ◽  
Author(s):  
Nira Richter-Dyn
Keyword(s):  

2002 ◽  
Vol 19 (1) ◽  
pp. 61-70 ◽  
Author(s):  
MICHAEL KALLONIATIS ◽  
GUIDO TOMISICH ◽  
JOHN W. WELLARD ◽  
LISA E. FOSTER

The aim of this study was to determine whether agmatine, a channel permeable probe, can identify photoreceptor dysfunction in the Royal College of Surgeons (RCS) retina at an earlier stage to that shown by apoptosis or anatomical markers, and also characterize the neurochemical development of the inner retina in the normal and degenerating rat. We used isolated retinas at different ages incubated in physiological media containing agmatine. Subsequently, postembedding immunocytochemistry was used to determine the number of labelled photoreceptors and the labelling pattern within postreceptoral neurons. Agmatine labelling patterns revealed a sequential development of retinal neurons beginning at postnatal day (PND)11/12 with most horizontal cells, a few ganglion and amacrine cells, showing a strong signal. The neurochemical development progressed rapidly, and reflects to a large part the known distribution of glutamate receptors, with inner nuclear labelling being evident by PND14, continuing with the same pattern of labelling in adulthood for the control retina. The RCS retina showed markedly reduced agmatine labelling in the inner retina at PND20. A rapid increase in photoreceptor AGB labelling was evident during the degeneration phase. Multiple samples at PND14 and PND16 confirmed a significant increase of labelled photoreceptors in the RCS retina.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
François Dubeau

We present a unified way to obtain optimal error bounds for general interpolatory integration rules. The method is based on the Peano form of the error term when we use Taylor’s expansion. These bounds depend on the regularity of the integrand. The method of integration by parts “backwards” to obtain bounds is also discussed. The analysis includes quadrature rules with nodes outside the interval of integration. Best error bounds for composite integration rules are also obtained. Some consequences of symmetry are discussed.


Sign in / Sign up

Export Citation Format

Share Document