scholarly journals A Study on the Calculation of Pedestrian’s Conflict Index Using Multi-Agent Based Model (Multi-ABM) - Focused on the Netlogo Simulation Model -

2013 ◽  
Vol 20 (4) ◽  
pp. 105-116 ◽  
Author(s):  
Lee, Jae-Kil ◽  
박정욱
Author(s):  
John Wu ◽  
David Ben-Arieh ◽  
Zhenzhen Shi

This research proposes an agent-based simulation model combined with the strength of systemic dynamic mathematical model, providing a new modeling and simulation approach of the pathogenesis of AIR. AIR is the initial stage of a typical sepsis episode, often leading to severe sepsis or septic shocks. The process of AIR has been in the focal point affecting more than 750,000 patients annually in the United State alone. Based on the agent-based model presented herein, clinicians can predict the sepsis pathogenesis for patients using the prognostic indicators from the simulation results, planning the proper therapeutic interventions accordingly. Impressively, the modeling approach presented creates a friendly user-interface allowing physicians to visualize and capture the potential AIR progression patterns. Based on the computational studies, the simulated behavior of the agent–based model conforms to the mechanisms described by the system dynamics mathematical models established in previous research.


2011 ◽  
Vol 2 (2) ◽  
pp. 105-121 ◽  
Author(s):  
John Wu ◽  
David Ben-Arieh ◽  
Zhenzhen Shi

This research proposes an agent-based simulation model combined with the strength of systemic dynamic mathematical model, providing a new modeling and simulation approach of the pathogenesis of AIR. AIR is the initial stage of a typical sepsis episode, often leading to severe sepsis or septic shocks. The process of AIR has been in the focal point affecting more than 750,000 patients annually in the United State alone. Based on the agent-based model presented herein, clinicians can predict the sepsis pathogenesis for patients using the prognostic indicators from the simulation results, planning the proper therapeutic interventions accordingly. Impressively, the modeling approach presented creates a friendly user-interface allowing physicians to visualize and capture the potential AIR progression patterns. Based on the computational studies, the simulated behavior of the agent–based model conforms to the mechanisms described by the system dynamics mathematical models established in previous research.


2015 ◽  
Vol 72 (4) ◽  
Author(s):  
Erma Suryani ◽  
Rully Agus Hendrawan ◽  
Umi Salama ◽  
Lily Puspa Dewi

Several studies have been conducted regarding save energy in consuming the electricity through the simple changes in routines and habits. In the case of electricity consumption, consumer behavior might influenced by several factors such as consumer profession, season, and environmental awareness. In this paper, we developed an Agent Based Model (ABM) to analyze the behavior of different agents in consuming the electricity energy for each type of profession (agent) as well as their interaction with the environment. This paper demonstrates a prototype agent based simulation model to estimate the electricity consumption based on the existing condition and some scenarios to reduce the electricity consumption from consumer point of view. From the scenario results, we analyzed the impact of the save energy to increase the electrification ratio. 


Sign in / Sign up

Export Citation Format

Share Document