scholarly journals Thorium, uranium and rare earth mineralization in rocks of the Ugakhan gold deposit, Bodaibo ore region (Irkutsk oblast)

2021 ◽  
pp. 78-93
Author(s):  
E.V. l Shepe ◽  
N.R. Ayupova ◽  
M.A. Rassomakhin ◽  
P.V. Khvorov

The paper reports on the results of studies of ore-bearing rocks of the Ugakhan gold deposit (Bodaybo district): metasandstones, metasiltstones and carbonaceous shales. The rocks consist of quartz, feldspar (albite, orthoclase), Fe-Mg chlorite, mica (muscovite, sericite) and carbonates (calcite, dolomite, anker-ite) and accessory titanite, rutile, tourmaline, zircon and apatite. All rocks contain fragments of microfossils exhibiting striking concentric zonation with alternated dark (carbonaceous matter) and light (carbonate-mica material) layers. In a range from metasandstones to carbonaceous shales, the rocks exhibit an increase in mica amount and the content (up to 3%) of carbonaceous matter, as well as the formation of regeneration rims around relict tourmaline and zircon. The REE mineralization includes silicates (REE-bearing epidote, thorite), fuorocarbonates (bastnesite) and phosphates (monazite, xenotime, ankylite), which are closely related to U minerals (uraninite, cofnite). Bastnesite, ankylite and thorite formed due to the decomposition of earlier REE-bearing epidote, whereas monazite and xenotime are the products of decomposition of apatite. Uraninite formed during lithifcation of matrix of carbon-bearing rocks and is replaced by cofnite. The thermal analysis of carbonaceous matter and the formation temperature of chlorite calculated using chlorite geothermometer (296–371 °С) indicate the transformation of rocks under conditions of sericite-chlorite subfacies of greenschist facies of metamorphism.

2011 ◽  
Vol 322 ◽  
pp. 337-340
Author(s):  
Lian Cai Du

A tripodal ligand, 2-acetylpyridine-tris(2-aminoethyl)amine (L), pyridine-N-oxide and their ternary complexes with rare earth nitrates have been synthesized. These new complexes with the general formula of Ln·L·PyNO·(NO3)3·nH2O (where Ln = La, Nd, Tb, Pr, Eu, n = 1~3 ) were characterized by elemental analysis, IR spectra, thermal analysis and molar conductivity. All the complexes are stable in air. The results show that the lanthanide ions in each complex are coordinated by nitrogen atoms of the ligand, oxygen atoms of PyNO and the nitrates. The fluorescent properties of the Eu(III) and Tb(III) complexes in solid were investigated.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 394 ◽  
Author(s):  
Seconde Ntiharirizwa ◽  
Philippe Boulvais ◽  
Marc Poujol ◽  
Yannick Branquet ◽  
Cesare Morelli ◽  
...  

The Gakara Rare Earth Elements (REE) deposit is one of the world’s highest grade REE deposits, likely linked to a carbonatitic magmatic-hydrothermal activity. It is located near Lake Tanganyika in Burundi, along the western branch of the East African Rift. Field observations suggest that the mineralized veins formed in the upper crust. Previous structures inherited from the Kibaran orogeny may have been reused during the mineralizing event. The paragenetic sequence and the geochronological data show that the Gakara mineralization occurred in successive stages in a continuous hydrothermal history. The primary mineralization in bastnaesite was followed by an alteration stage into monazite. The U-Th-Pb ages obtained on bastnaesite (602 ± 7 Ma) and on monazite (589 ± 8 Ma) belong to the Pan-African cycle. The emplacement of the Gakara REE mineralization most likely took place during a pre-collisional event in the Pan-African belt, probably in an extensional context.


2014 ◽  
Vol 88 (s2) ◽  
pp. 1118-1119 ◽  
Author(s):  
Peirong LI ◽  
Baocheng PANG ◽  
Baohua WANG ◽  
Yuanqiang LI ◽  
Yequan ZHOU ◽  
...  

2020 ◽  
Vol 6 (41) ◽  
pp. eabb6570 ◽  
Author(s):  
Michael Anenburg ◽  
John A. Mavrogenes ◽  
Corinne Frigo ◽  
Frances Wall

Carbonatites and associated rocks are the main source of rare earth elements (REEs), metals essential to modern technologies. REE mineralization occurs in hydrothermal assemblages within or near carbonatites, suggesting aqueous transport of REE. We conducted experiments from 1200°C and 1.5 GPa to 200°C and 0.2 GPa using light (La) and heavy (Dy) REE, crystallizing fluorapatite intergrown with calcite through dolomite to ankerite. All experiments contained solutions with anions previously thought to mobilize REE (chloride, fluoride, and carbonate), but REEs were extensively soluble only when alkalis were present. Dysprosium was more soluble than lanthanum when alkali complexed. Addition of silica either traps REE in early crystallizing apatite or negates solubility increases by immobilizing alkalis in silicates. Anionic species such as halogens and carbonates are not sufficient for REE mobility. Additional complexing with alkalis is required for substantial REE transport in and around carbonatites as a precursor for economic grade-mineralization.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 78 ◽  
Author(s):  
Nina Kolpakova ◽  
Zhamilya Sabitova ◽  
Victor Sachkov ◽  
Rodion Medvedev ◽  
Roman Nefedov ◽  
...  

Techniques of stripping voltammetry (SV) determination of silver and gold in pyrites and carbonaceous matter are developed. The problem of quantitative transfer of the analytes into the solution is solved. For this purpose, the ore matrix of carbonaceous shales was decomposed by mineral acids in autoclaves at high pressures. The element to be determined from the sample matrix was separated by extraction. Ag(I) ions from the solutions were extracted in the form of a dithizonate complex in CCl4. Au(III) ions were extracted by diethyl ether. The extracts were decomposed thermally. The dry residue was dissolved in the background electrolyte, and the element was determined by the SV method. The graphite electrode (GE) impregnated with polyethylene was used as a working electrode in the SV determination of silver. The SV determination of gold was carried out using a GE modified by bismuth. The limits of detection (LOD) of Ag(I) and Au(III) contents were equal to 0.016 mg L−1 and 0.0086 mg L−1, respectively. The results of SV determination of gold and silver in standard samples, pyrites, and carbonaceous shales were presented. The silver content in the pyrite was 13.6 g t−1, and in carbon shale it was 0.34 g t−1. The concentration of gold in the pyrite of the Kirovsko–Kryklinskaya ore zone was 1.15 g t−1, while in carbonaceous shales it was 2.66 g t−1. The obtained data were consistent with the data of atomic emission spectroscopy (AES) and inductively-coupled plasma mass spectrometry (ICP–MS). The error of determination of elements by stripping voltammetry was calculated as ranging from 10 to 6 g t−1 (less than 12%) in pyrite and carbonaceous material when determining the silver content, and from 1 to 3 g t−1 (less than 22%) when determining the gold content in pyrite and carbonaceous matter.


Sign in / Sign up

Export Citation Format

Share Document