scholarly journals Grey Relational Analysis of EDM of Ti6Al4V using TiC/Cu Composite Tool Electrode Made with Nano and Micron Sized Particles

This paper covers the use of Taguchi based grey relational analysis in EDM process. The analysis is used to determine an optimum combination of process parameters, which involves individual and simultaneous improvement of surface roughness (SR) and the micro hardness (MH) of Ti6Al4V alloy in electric discharge machining (EDM). The tool used in the machining process is TiC/Cu powder metallurgy (P/M) electrode. Taguchi’s L18 mixed orthogonal array is used to plan experimentations which includes the machine tool and electrode parameters as the study parameters. The analysis of variance (ANOVA) for grey relational grade showed that particle size EDM electrode was the most dominant factor (64.13%) followed by peak current (7.41%) in influencing surface quality of EDMed Ti6Al4V alloy. Whereas, peak current is the most influential parameter while evaluating the individual responses of SR and MH. Finally, the optimum combination of process parameters was validated by confirmation experiments that considerably improved the multiple quality characteristics simultaneously.

2020 ◽  
Vol 44 (4) ◽  
pp. 239-249
Author(s):  
Pravin Pawar ◽  
Amaresh Kumar ◽  
Raj Ballav

The electrochemical discharge machining process (ECDM) is a hybrid advanced technology integrated with electrochemical and electro-discharge processes has used for the manufacturing of non-conducting along with conducting materials. The silicon carbide is non-conducting material which has widely used in various fields such as automobile, aviation, medical, nuclear reactor, and missile. The machining of silicon carbide is a challenging task by using non-conventional along with conventional machining processes due to its physical properties. The current research work shows the machining of Silicon carbide material by using fabricated ECDM machine setup with gunmetal tool material. The Taguchi L27 orthogonal array technique is applied for experimental work. The grey relational analysis optimization is applied for the investigation of optimum input factors for better output responses. The input process factors like electrolyte concentration, applied voltage, and rotation of tool and outcome results such as machined depth and the diameter of hole were checked after drilling of silicon carbide material. The experimental results indicate the electrolyte concentration is the leading factor for diameter of hole and depth of machined hole subsequent to voltage and tool rotation.


2015 ◽  
Vol 651-653 ◽  
pp. 738-743
Author(s):  
Oana Dodun ◽  
Vasile Merticaru ◽  
Laurenţiu Slatineanu ◽  
Margareta Coteaţă

The wire electrical discharge machining is a machining method able to allow detaching parts from plates type workpieces as a consequence of electrical discharges developed between workpiece and wire tool electrode found in a motion along its axis; there is also a work motion along the contour to be obtained. There are many factors able to exert influence on the sizes of parameters of technological interest. On the other hand, there are various methods that can be used in order to establish the optimal combination of the input factors, so that obtaining of machining best results is possible. When there are many process output factors, a problem of multiobjective optimization could be formulated. The Grey relational analysis method and the Taguchi method could be applied in order to optimize the wire electrical discharge machining process, when various criteria having distinct significances are considered. An experimental research was designed and developed in order to optimize the wire electrical discharge cutting of parts made of an alloyed steel, by considering six input factors: test piece thickness, pulse on time, pulse off time, wire axial tensile, current intensity and travelling wire electrode speed. As output parameters, one took into consideration surface roughness, wire tool electrode massic wear, cutting speed along the contour to be obtained. 16 experiments were developed in accordance with the requirements specific to a Taguchi table L16. The results of experiments were processed by means of Grey relational analysis method and Taguchi method.


2013 ◽  
Vol 330 ◽  
pp. 747-753
Author(s):  
Othman Belgassim ◽  
Abdurahman Abu-Saada

This study presents optimization of multiple performance characteristics [material removal rate (MRR), surface roughness (Ra), and overcut (OC)] of hardened AISI D3 tool steel in electrical discharge machining (EDM) using Taguchi method and Grey relational analysis. Machining process parameters selected were pulse current Ip, pulse-on time Ton, pulse-off time Toff and gap voltage Vg . Based on ANOVA, pulse current is found to be the most significant factor affecting EDM process. Optimized process parameters simultaneously leading to a higher MRR, lower Ra, and lower OC are then verified through a confirmation experiment. Validation experiment shows an improved MRR, Ra and OC when Taguchi method and grey relational analysis were used.


Sign in / Sign up

Export Citation Format

Share Document