scholarly journals Multipath Routing of Elephant Flows in Data Centers Based on Software Defined Networking

The data center networks encompass various cloud services. Network congestion and network load imbalance may occur in data center networks due to elephant flows. In order to improve the throughput and overall utilization of the network, a dynamic load balancing mechanism has to be in place. Software Defined Networking (SDN) is used to perform the balancing of the network load. SDN can obtain the global view of the network and hence contain the status and topology of the entire data center network. The elephant flows can be split and send to multiple paths based on the current state of the network. The described idea is implemented in the OpenFlow environment and tested for improvement. The result shows the enhancement in throughput and network utilization.

Author(s):  
Jiawei Huang ◽  
Shiqi Wang ◽  
Shuping Li ◽  
Shaojun Zou ◽  
Jinbin Hu ◽  
...  

AbstractModern data center networks typically adopt multi-rooted tree topologies such leaf-spine and fat-tree to provide high bisection bandwidth. Load balancing is critical to achieve low latency and high throughput. Although the per-packet schemes such as Random Packet Spraying (RPS) can achieve high network utilization and near-optimal tail latency in symmetric topologies, they are prone to cause significant packet reordering and degrade the network performance. Moreover, some coding-based schemes are proposed to alleviate the problem of packet reordering and loss. Unfortunately, these schemes ignore the traffic characteristics of data center network and cannot achieve good network performance. In this paper, we propose a Heterogeneous Traffic-aware Partition Coding named HTPC to eliminate the impact of packet reordering and improve the performance of short and long flows. HTPC smoothly adjusts the number of redundant packets based on the multi-path congestion information and the traffic characteristics so that the tailing probability of short flows and the timeout probability of long flows can be reduced. Through a series of large-scale NS2 simulations, we demonstrate that HTPC reduces average flow completion time by up to 60% compared with the state-of-the-art mechanisms.


Author(s):  
V. Deeban Chakravarthy ◽  
B. Amutha

Due to the increase in the number of users on the internet and the number of applications that is available in the cloud makes Data Center Networking (DCN) has the backbone for computing. These data centre requires high operational cost and also experience the link failures and congestions often. Hence the solution is to use Software Defined Networking (SDN) based load balancer which improves the efficiency of the network by distributing the traffic across multiple paths to optimize the efficiency of the network. Traditional load balancers are very expensive and inflexible. These SDN load balancers do not require costly hardware and can be programmed, which it makes it easier to implement user-defined algorithms and load balancing strategies. In this paper, we have proposed an efficient load balancing technique by considering different parameters to maintain the load efficiently using Open FlowSwitches connected to ONOS controller.


Author(s):  
Abdallah Mustafa Abdelrahman ◽  
Joel J. P. C. Rodrigues ◽  
Mukhtar M. E. Mahmoud ◽  
Kashif Saleem ◽  
Ashok Kumar Das ◽  
...  

Author(s):  
Mahendra Suryavanshi ◽  
Dr. Ajay Kumar ◽  
Dr. Jyoti Yadav

Recent data centers provide dense inter-connectivity between each pair of servers through multiple paths. These data centers offer high aggregate bandwidth and robustness by using multiple paths simultaneously. Multipath TCP (MPTCP) protocol is developed for improving throughput, fairly sharing network link capacity and providing robustness during path failure by utilizing multiple paths over multi-homed data center networks. Running MPTCP protocol for latency-sensitive rack-local short flows with many-to-one communication pattern at the access layer of multi-homed data center networks creates MPTCP incast problem. In this paper, Balanced Multipath TCP (BMPTCP) protocol is proposed to mitigate MPTCP incast problem in multi-homed data center networks. BMPTCP is a window-based congestion control protocol that prevents constant growth of each worker’s subflow congestion window size. BMPTCP computes identical congestion window size for all concurrent subflows by considering bottleneck Top of Rack (ToR) switch buffer size and increasing count of concurrently transmitting workers. This helps BMPTCP to avoid timeout events due to full window loss at ToR switch. Based on current congestion situation at ToR switches, BMPTCP adjust transmission rates of each worker’s subflow so that total amount of data transmitted by all concurrent subflows does not overflow bottleneck ToR switch buffer. Simulation results show that BMPTCP effectively alleviates MPTCP incast. It improves goodput, reduces flow completion time as compared to existing MPTCP and EW-MPTCP protocols.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 58158-58167
Author(s):  
Zuneera Umair ◽  
Umair Mujtaba Qureshi ◽  
Yingying Cheng ◽  
Xiaohua Jia

Sign in / Sign up

Export Citation Format

Share Document