scholarly journals Malaria Parasite Detection in Thick Blood Smears using Deep Learning

Author(s):  
K Venkata Shiva Rama Krishna Reddy ◽  
◽  
S Phani Kumar ◽  

Malaria parasitized detection is very important to detect as there are so many deaths due to false detection of malaria in medical reports. So analysis has gained a lot of attention in recent years. Detection of malaria is important as fast as possible because detecting malaria is difficult in blood smears. Our idea is to build a transfer learning model and detect the thick blood smears whether the presence of malaria parasites in a drop of blood. The data consists of 5000 each infected and uninfected data obtained from the NIH website. In this paper, I propose to use three different types of neural networks for the performance evaluation of the malaria data by transfer learning using CNN, VGG19, and fine-tuned VGG19. Transfer learning model performed well among various other models by achieving a precision of 98 percent and an f-1 score of 96 percent.

2020 ◽  
Vol 24 (5) ◽  
pp. 1427-1438 ◽  
Author(s):  
Feng Yang ◽  
Mahdieh Poostchi ◽  
Hang Yu ◽  
Zhou Zhou ◽  
Kamolrat Silamut ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 2057-2060

Detection of malaria disease is done by finding the presence of malaria parasite or plasmodium in blood smear. Here malaria parasites are detected in thick blood smears. This paper proposes a version to detect the presence of malaria parasite(plasmodium) in thick blood smears automatically with the help of deep learning and not using microscopy examinations and chemical tests. This detection will be done using two steps, that is, intensity-based screening which is the preprocessing step, the first step, that extracts candidates for processing, and next is customized convolutional neural network (CNN), the processing step, which takes the preprocessed images and detects whether malaria parasite is present or not. Hold-out(3:1) technique is used for evaluation of the model. The model has achieved an accuracy reaching 91%. The two preprocessing and processing steps improves object detection of the system. Malaria is usually detected using chemical tests and microscopy examinations. This process requires a lot of resources mainly laboratories. Parasitologists who are experienced are sometimes difficult to find, so manually counting the malaria parasites can be prone to major errors. Due to which the cost for testing and even time for malaria diagnosis increases drastically. Since the traditional process of malaria parasite in blood smears detection has many drawbacks it needs a sophisticated, accurate diagnosing equipment or system which has low cost. This system can be used in regions and areas where there are constraints on resources, time of people and cost which they can afford. This system provides many advantages to rural diagnostic centres where the supplies are limited and not easily accessible.


2021 ◽  
Vol 10 (3) ◽  
pp. 137
Author(s):  
Youngok Kang ◽  
Nahye Cho ◽  
Jiyoung Yoon ◽  
Soyeon Park ◽  
Jiyeon Kim

Recently, as computer vision and image processing technologies have rapidly advanced in the artificial intelligence (AI) field, deep learning technologies have been applied in the field of urban and regional study through transfer learning. In the tourism field, studies are emerging to analyze the tourists’ urban image by identifying the visual content of photos. However, previous studies have limitations in properly reflecting unique landscape, cultural characteristics, and traditional elements of the region that are prominent in tourism. With the purpose of going beyond these limitations of previous studies, we crawled 168,216 Flickr photos, created 75 scenes and 13 categories as a tourist’ photo classification by analyzing the characteristics of photos posted by tourists and developed a deep learning model by continuously re-training the Inception-v3 model. The final model shows high accuracy of 85.77% for the Top 1 and 95.69% for the Top 5. The final model was applied to the entire dataset to analyze the regions of attraction and the tourists’ urban image in Seoul. We found that tourists feel attracted to Seoul where the modern features such as skyscrapers and uniquely designed architectures and traditional features such as palaces and cultural elements are mixed together in the city. This work demonstrates a tourist photo classification suitable for local characteristics and the process of re-training a deep learning model to effectively classify a large volume of tourists’ photos.


2021 ◽  
Vol 27 ◽  
Author(s):  
Qi Zhou ◽  
Wenjie Zhu ◽  
Fuchen Li ◽  
Mingqing Yuan ◽  
Linfeng Zheng ◽  
...  

Objective: To verify the ability of the deep learning model in identifying five subtypes and normal images in noncontrast enhancement CT of intracranial hemorrhage. Method: A total of 351 patients (39 patients in the normal group, 312 patients in the intracranial hemorrhage group) performed with intracranial hemorrhage noncontrast enhanced CT were selected, with 2768 images in total (514 images for the normal group, 398 images for the epidural hemorrhage group, 501 images for the subdural hemorrhage group, 497 images for the intraventricular hemorrhage group, 415 images for the cerebral parenchymal hemorrhage group, and 443 images for the subarachnoid hemorrhage group). Based on the diagnostic reports of two radiologists with more than 10 years of experience, the ResNet-18 and DenseNet-121 deep learning models were selected. Transfer learning was used. 80% of the data was used for training models, 10% was used for validating model performance against overfitting, and the last 10% was used for the final evaluation of the model. Assessment indicators included accuracy, sensitivity, specificity, and AUC values. Results: The overall accuracy of ResNet-18 and DenseNet-121 models were 89.64% and 82.5%, respectively. The sensitivity and specificity of identifying five subtypes and normal images were above 0.80. The sensitivity of DenseNet-121 model to recognize intraventricular hemorrhage and cerebral parenchymal hemorrhage was lower than 0.80, 0.73, and 0.76 respectively. The AUC values of the two deep learning models were above 0.9. Conclusion: The deep learning model can accurately identify the five subtypes of intracranial hemorrhage and normal images, and it can be used as a new tool for clinical diagnosis in the future.


2021 ◽  
Vol 65 (1) ◽  
pp. 11-22
Author(s):  
Mengyao Lu ◽  
Shuwen Jiang ◽  
Cong Wang ◽  
Dong Chen ◽  
Tian’en Chen

HighlightsA classification model for the front and back sides of tobacco leaves was developed for application in industry.A tobacco leaf grading method that combines a CNN with double-branch integration was proposed.The A-ResNet network was proposed and compared with other classic CNN networks.The grading accuracy of eight different grades was 91.30% and the testing time was 82.180 ms, showing a relatively high classification accuracy and efficiency.Abstract. Flue-cured tobacco leaf grading is a key step in the production and processing of Chinese-style cigarette raw materials, directly affecting cigarette blend and quality stability. At present, manual grading of tobacco leaves is dominant in China, resulting in unsatisfactory grading quality and consuming considerable material and financial resources. In this study, for fast, accurate, and non-destructive tobacco leaf grading, 2,791 flue-cured tobacco leaves of eight different grades in south Anhui Province, China, were chosen as the study sample, and a tobacco leaf grading method that combines convolutional neural networks and double-branch integration was proposed. First, a classification model for the front and back sides of tobacco leaves was trained by transfer learning. Second, two processing methods (equal-scaled resizing and cropping) were used to obtain global images and local patches from the front sides of tobacco leaves. A global image-based tobacco leaf grading model was then developed using the proposed A-ResNet-65 network, and a local patch-based tobacco leaf grading model was developed using the ResNet-34 network. These two networks were compared with classic deep learning networks, such as VGGNet, GoogLeNet-V3, and ResNet. Finally, the grading results of the two grading models were integrated to realize tobacco leaf grading. The tobacco leaf classification accuracy of the final model, for eight different grades, was 91.30%, and grading of a single tobacco leaf required 82.180 ms. The proposed method achieved a relatively high grading accuracy and efficiency. It provides a method for industrial implementation of the tobacco leaf grading and offers a new approach for the quality grading of other agricultural products. Keywords: Convolutional neural network, Deep learning, Image classification, Transfer learning, Tobacco leaf grading


2020 ◽  
Vol 61 (2) ◽  
pp. 513-519
Author(s):  
Mircea-Sebastian Şerbănescu ◽  
Carmen-Nicoleta Oancea ◽  
Costin Teodor Streba ◽  
Iancu Emil Pleşea ◽  
Daniel Pirici ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document