scholarly journals Test Case Prioritization & Selection for an Object Oriented Software using Genetic Algorithm.

In this paper our aim is to propose a Test Case Selection and Prioritization technique for OOP for ordering the test cases as per in accordance with their priority for finding the faults in the OOS. We have used the heuristic Genetic Algorithm, in order to generating the order of these prioritized test cases for a given OOS. The motive is to put a test case first into the ordered sequence that may have the highest prospective of finding an error in the given OOS & then soon..

2021 ◽  
Vol 27 (2) ◽  
pp. 170-189
Author(s):  
P. K. Gupta

Software is an integration of numerous programming modules  (e.g., functions, procedures, legacy system, reusable components, etc.) tested and combined to build the entire module. However, some undesired faults may occur due to a change in modules while performing validation and verification. Retesting of entire software is a costly affair in terms of money and time. Therefore, to avoid retesting of entire software, regression testing is performed. In regression testing, an earlier created test suite is used to retest the software system's modified module. Regression Testing works in three manners; minimizing test cases, selecting test cases, and prioritizing test cases. In this paper, a two-phase algorithm has been proposed that considers test case selection and test case prioritization technique for performing regression testing on several modules ranging from a smaller line of codes to huge line codes of procedural language. A textual based differencing algorithm has been implemented for test case selection. Program statements modified between two modules are used for textual differencing and utilized to identify test cases that affect modified program statements. In the next step, test case prioritization is implemented by applying the Genetic Algorithm for code/condition coverage. Genetic operators: Crossover and Mutation have been applied over the initial population (i.e. test cases), taking code/condition coverage as fitness criterion to provide a prioritized test suite. Prioritization algorithm can be applied over both original and reduced test suite depending upon the test suite's size or the need for accuracy. In the obtained results, the efficiency of the prioritization algorithms has been analyzed by the Average Percentage of Code Coverage (APCC) and Average Percentage of Code Coverage with cost (APCCc). A comparison of the proposed approach is also done with the previously proposed methods and it is observed that APCC & APCCc values achieve higher percentage values faster in the case of the prioritized test suite in contrast to the non-prioritized test suite.


In this paper we have presented an automated unified approach called AVISAR for the testing of the Object-oriented Systems (OOS) by Test Case Prioritization (TCP) & their selection using Genetic Algorithm for the OOS. The testing of OOS has become a more challenging task as nowadays it has been widely accepted as a paradigm for large-scale system designing. In this research paper we have also studied the Genetic algorithms in relation to their applications for providing solutions to the various aspects of the OO Testing. As a result after implementing the tool AVISAR using GA’s it has proven to be useful in providing effective solutions to resolve the issues related to the OO Testing domain. Thus it can be used for reducing the efforts of the users for testing by efficient selection of effective test cases


2012 ◽  
Vol 2 (3) ◽  
pp. 1171-1177
Author(s):  
Uma Sharma ◽  
Vedant Rastogi

Regression testing is a significant but a very expensive testing process .Test case prioritization is a technique to schedule and execute the test cases in such an order that results in increasing their ability to meet some performance goal. One of the main goal is to increase the rate of fault detection –i.e. to detect the faults as early as possible during the testing process. Test case prioritization is used to minimize the expenses of regression testing. This paper  proposes  a technique  to select and prioritize the test cases and  results in   improving  the rate of fault detection.


Test case prioritization (TCP) is a software testing technique that finds an ideal ordering of test cases for regression testing, so that testers can obtain the maximum benefit of their test suite, even if the testing process is stop at some arbitrary point. The recent trend of software development uses OO paradigm. This paper proposed a cost-cognizant TCP approach for object-oriented software that uses path-based integration testing. Path-based integration testing will identify the possible execution path and extract these paths from the Java System Dependence Graph (JSDG) model of the source code using forward slicing technique. Afterward evolutionary algorithm (EA) was employed to prioritize test cases based on the severity detection per unit cost for each of the dependent faults. The proposed technique was known as Evolutionary Cost-Cognizant Regression Test Case Prioritization (ECRTP) and being implemented as regression testing approach for experiment.


2013 ◽  
Vol 10 (1) ◽  
pp. 73-102 ◽  
Author(s):  
Lijun Mei ◽  
Yan Cai ◽  
Changjiang Jia ◽  
Bo Jiang ◽  
W.K. Chan

Many web services not only communicate through XML-based messages, but also may dynamically modify their behaviors by applying different interpretations on XML messages through updating the associated XML Schemas or XML-based interface specifications. Such artifacts are usually complex, allowing XML-based messages conforming to these specifications structurally complex. Testing should cost-effectively cover all scenarios. Test case prioritization is a dimension of regression testing that assures a program from unintended modifications by reordering the test cases within a test suite. However, many existing test case prioritization techniques for regression testing treat test cases of different complexity generically. In this paper, the authors exploit the insights on the structural similarity of XML-based artifacts between test cases in both static and dynamic dimensions, and propose a family of test case prioritization techniques that selects pairs of test case without replacement in turn. To the best of their knowledge, it is the first test case prioritization proposal that selects test case pairs for prioritization. The authors validate their techniques by a suite of benchmarks. The empirical results show that when incorporating all dimensions, some members of our technique family can be more effective than conventional coverage-based techniques.


2020 ◽  
Vol 11 (2) ◽  
pp. 1-14
Author(s):  
Angelin Gladston ◽  
Niranjana Devi N.

Test case selection helps in improving quality of test suites by removing ambiguous, redundant test cases, thereby reducing the cost of software testing. Various works carried out have chosen test cases based on single parameter and optimized the test cases using single objective employing single strategies. In this article, a parameter selection technique is combined with an optimization technique for optimizing the selection of test cases. A two-step approach has been employed. In first step, the fuzzy entropy-based filtration is used for test case fitness evaluation and selection. In second step, the improvised ant colony optimization is employed to select test cases from the previously reduced test suite. The experimental evaluation using coverage parameters namely, average percentage statement coverage and average percentage decision coverage along with suite size reduction, demonstrate that by using this proposed approach, test suite size can be reduced, reducing further the computational effort incurred.


2013 ◽  
Vol 709 ◽  
pp. 616-619
Author(s):  
Jing Chen

This paper proposes a genetic algorithm-based method to generate test cases. This method provides information for test case generation using state machine diagrams. Its feature is realizing automation through fewer generated test cases. In terms of automatic generation of test data based on path coverage, the goal is to build a function that can excellently assess the generated test data and guide the genetic algorithms to find the targeting parameter values.


Sign in / Sign up

Export Citation Format

Share Document