scholarly journals Heat Recovery Ventilation for Energy-Efficient Buildings: Design, Operation and Maintenance

Since the 1990s, many efforts have been intensified to fight global warming and energy crisis. Considering that the building sector is responsible for about 40% of the EU energy use and 36% of CO2 emissions, many sustainable concepts have been revived from the past, a number of new innovative technologies have been invented, and new construction standards and policies have been implemented. Sustainable architecture offers tailor-made solutions to minimize the negative environmental impacts of buildings without compromising its users' comfort. According to studies, humans spend about 90% of their live-time indoors; indoor air quality has a major effect on human health. Hence, bringing fresh air into all habitable areas without letting the warm/cool air escape has become a priority. If properly operated and maintained, heat recovery ventilation (VHR) in energy-efficient buildings leads to an increased filtration and removal of micropollutants, and an overall improvement of the indoor air quality, thus generating more comfort and less health-related problems. A systematic case study in Italy is used in this research providing evidences of the effectiveness of mechanical ventilation heat recovery systems. This paper discusses a case with a combination of poor design, operation and maintenance to answer the questions of: what are the concerns about potential failures that are associated with these systems; and are there any cons in the technical aspects of a mechanical heat recovery ventilation system?

Urban Climate ◽  
2015 ◽  
Vol 14 ◽  
pp. 475-485 ◽  
Author(s):  
G.G. Mandayo ◽  
J. Gonzalez-Chavarri ◽  
E. Hammes ◽  
H. Newton ◽  
I. Castro-Hurtado ◽  
...  

Author(s):  
Ion-Costinel Mareș ◽  
Tiberiu Catalina ◽  
Marian-Andrei Istrate ◽  
Alexandra Cucoș ◽  
Tiberius Dicu ◽  
...  

The purpose of this article is the assessment of energy efficiency and indoor air quality for a single-family house located in Cluj-Napoca County, Romania. The studied house is meant to be an energy-efficient building with thermal insulation, low U-value windows, and a high efficiency boiler. Increasing the energy efficiency of the house leads to lower indoor air quality, due to lack of natural ventilation. As the experimental campaign regarding indoor air quality revealed, there is a need to find a balance between energy consumption and the quality of the indoor air. To achieve superior indoor air quality, the proposed mitigation systems (decentralized mechanical ventilation with heat recovery combined with a minimally invasive active sub-slab depressurization) have been installed to reduce the high radon level in the dwelling, achieving an energy reduction loss of up to 86%, compared to the traditional natural ventilation of the house. The sub-slab depressurization system was installed in the room with the highest radon level, while the local ventilation system with heat recovery has been installed in the exterior walls of the house. The results have shown significant improvement in the level of radon decreasing the average concentration from 425 to 70 Bq/m 3, respectively the carbon dioxide average of the measurements being around 760 ppm. The thermal comfort improves significantly also, by stabilizing the indoor temperature at 21 °C, without any important fluctuations. The installation of this system has led to higher indoor air quality, with low energy costs and significant energy savings compared to conventional ventilation (by opening windows).


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3246
Author(s):  
Anass Berouine ◽  
Radouane Ouladsine ◽  
Mohamed Bakhouya ◽  
Mohamed Essaaidi

Ventilation, heating and air conditioning systems are the main energy consumers in building sector. Improving the energy consumption of these systems, while satisfying the occupants’ comfort, is the major concern of control and automation designers and researchers. Model predictive control (MPC) methods have been widely studied in order to reduce the energy usage while enhancing the occupants’ comfort. In this paper, a generalized predictive control (GPC) algorithm based on controlled auto-regressive integrated moving average is investigated for standalone ventilation systems’ control. A building’s ventilation system is first modeled together with the GPC and MPC controllers. Simulations have been conducted for validation purposes and are structured into two main parts. In the first part, we compare the MPC with two traditional controllers, while the second part is dedicated to the comparison of the MPC against the GPC controller. Simulation results show the effectiveness of the GPC in reducing the energy consumption by about 4.34% while providing significant indoor air quality improvement.


2021 ◽  
Vol 751 ◽  
pp. 141858
Author(s):  
B.D. Burghele ◽  
M. Botoș ◽  
S. Beldean-Galea ◽  
A. Cucoș ◽  
T. Catalina ◽  
...  

2015 ◽  
Vol 14 (7) ◽  
pp. 1487-1494 ◽  
Author(s):  
Marco Arnesano ◽  
Gian Marco Revel ◽  
Filippo Pietroni ◽  
Jurgen Frick ◽  
Manuela Reichert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document