scholarly journals Robust State Feedback Controller for Photovoltaic Inverter System using Unbundled Smart Meter

The paper proposes the integration of photovoltaics into distribution power system through inverter control and optimally managing the power flow based on smart energy meter data. The concept of Unbundled Smart Meter (USM) is used which to optimally integrate the inverter control logic with in the Smart meter which requires the construction of SMX (Smart Meter Extension) library. The proposed approach is adapted to make the design more robust and dynamic. State feedback controller has been designed to control the power flow to and from between the inverter and grid through USM and hence provide additional services to support grid operations. The proposed system gives the flexibility of adding numerous functionalities in the installed smart meter without the fuss of firmware change and hence integration of renewables to grid becomes more efficient as the meter’s instantaneous data are used in the dynamic control of the system. The validation of the proposed scheme is achieved by time domain simulations on MATLAB/Simulink R2018a platform along with Arduino programming on Proteus 8.1 software. These results are further assessed through Hardware experiment observations.

Author(s):  
Kun Ji ◽  
Won-Jong Kim

In this paper, robust H∞ control problems for networked control systems (NCSs) with network-induced time delays and subject to norm-bounded parameter uncertainties are presented and solved. Based on a new discrete-time model, two approaches of robust controller design are proposed—design of a memoryless state-feedback controller and design of a dynamic state-feedback controller. The proposed memoryless state-feedback controller design method is given in terms of linear matrix inequalities (LMIs), and the delay bound can be computed by using the standard LMI techniques. A numerical example is given to illustrate the feasibility and effectiveness of this methodology. The proposed dynamic state-feedback controller design method is based on a discrete-time Artstein transform. With the sufficient conditions for robust stability and H∞ control developed in this paper, we also derive the upper bound of network-induced time delays and the lower bound of the network date-transmission rate that can be used as a guideline in choosing proper networks as communication media for NCSs. We constructed an NCS test bed to experimentally verify the feasibility and effectiveness of proposed design methodologies.


Sign in / Sign up

Export Citation Format

Share Document