scholarly journals SR-UML: Quality Visualization in Software Design

The current requirements of software are intensively based on load sharing, on-demand services, cascading requirements, redundancy for reliability and executing on heterogeneous environments. It needs precise architectural details for development of such software systems. These are large scale software systems with complex interactions amongst the constituent components. Testing for performance and conformance to quality requires perspective modeling fordesigning critical systems. The analysis of these systems is focused on dynamic or execution time behavior for achieving quality. In the same context, this paper redefines Functional Flow Specification for dynamic analysis of critical and collaborating systems. Functional Flow based modeling is a mature concept in the domain of system engineering but is rarely applicable to software systems. Functional Flow Block Reliability Diagram (FFBRD) is a notation for abstract view of the system evolution and interactions. This adopts the specification format of UML and system modeling conventions of SysML specially Enhanced Functional Flow Block Diagram (EFFBD). The flow of data and control are so designed that it best suits the approaches for quality analysis like system reliability. The method proposed is System Reliability with UML or SR-UML for generating test through FFBRD. It also caters to the need of designing software in a familiar formalization for extending, translating and simulating with existing algorithms. From the results collected through various scenarios, we can conclude that SR-UML is instrumental in process improvement of current software development methods

SIMULATION ◽  
2018 ◽  
Vol 95 (4) ◽  
pp. 363-381
Author(s):  
Fuyu Sun ◽  
Jianping Zhou ◽  
Shuai Guo ◽  
Yi Li

Service-Oriented Architecture (SOA) has gained considerable popularity for the development of large-scale distributed software systems. The SOA paradigm promotes the reusability and integrability of software in heterogeneous environments by means of open standards. The existing problem is that every service-oriented software development project often requires a customized development process that provides specific service-oriented software in support of requirements unique to that project. To resolve this problem, this study proposes universal service-oriented software (USOS). USOS focuses on the general simulation technology and integrates many features, which are necessary to build a correct and efficient simulation system. It is aimed at providing a professional environment to reduce the cost of modeling as well as the execution time of the simulation for multi-type models. USOS supports many advanced features such as dynamic model template generation, multi-formalism model debugging, flexible model-driven application, etc. Developers may use USOS as an open framework to build, store, and verify models very efficiently. Based on USOS, we have developed a large-scale parallel simulation platform called SIM, which is oriented to test parallel and distributed architectures, and applications in the aerospace domain. This study introduces the distinctive features of USOS for practical implementation of SIM and validates the performance by a prototype system simulation.


1995 ◽  
pp. 3-21
Author(s):  
S. S. Kholod

One of the most difficult tasks in large-scale vegetation mapping is the clarification of mechanisms of the internal integration of vegetation cover territorial units. Traditional way of searching such mechanisms is the study of ecological factors controlling the space heterogeneity of vegetation cover. In essence, this is autecological analysis of vegetation. We propose another way of searching the mechanisms of territorial integration of vegetation. It is connected with intracoenotic interrelation, in particular, with the changing role of edificator synusium in a community along the altitudinal gradient. This way of searching is illustrated in the model-plot in subarctic tundra of Central Chukotka. Our further suggestion concerns the way of depicting these mechanisms on large-scale vegetation map. As a model object we chose the catena, that is the landscape formation including all geomorphjc positions of a slope, joint by the process of moving the material down the slope. The process of peneplanation of a mountain system for a long geological time favours to the levelling the lower (accumulative) parts of slopes. The colonization of these parts of the slope by the vegetation variants, corresponding to the lowest part of catena is the result of peneplanation. Vegetation of this part of catena makes a certain biogeocoenotic work which is the levelling of the small infralandscape limits and of the boundaries in vegetation cover. This process we name as the continualization on catena. In this process the variants of vegetation in the lower part of catena are being broken into separate synusiums. This is the process of decumbation of layers described by V. B. Sochava. Up to the slope the edificator power of the shrub synusiums sharply decreases. Moss and herb synusium have "to seek" the habitats similar to those under the shrub canopy. The competition between the synusium arises resulting in arrangement of a certain spatial assemblage of vegetation cover elements. In such assemblage the position of each element is determined by both biotic (interrelation with other coenotic elements) and abiotic (presence of appropriate habitats) factors. Taking into account the biogeocoenotic character of the process of continualization on catena we name such spatial assemblage an exolutionary-biogeocoenotic series. The space within each evolutionary-biogeocoenotic series is divided by ecological barriers into some functional zones. In each of the such zones the struggle between synusiums has its individual expression and direction. In the start zone of catena (extensive pediment) the interrelations of synusiums and layers control the mutual spatial arrangement of these elements at the largest extent. Here, as a rule, there predominate edificator synusiums of low and dwarfshrubs. In the first order limit zone (the bend of pediment to the above part of the slope) one-species herb and moss synusiums, oftenly substituting each other in similar habitats, get prevalence. In the zone of active colonization of slope (denudation slope) the coenotic factor has the least role in the spatial distribution of the vegetation cover elements. In particular, phytocoenotic interactions take place only within separate microcoenoses of herbs, mosses and lichens. In the zone of the attenuation of continualization process (the upper most parts of slope, crests) phytocoenotic interactions are almost absent and the spatial distribution of vegetation cover elements depends exclusively on the abiotic factors. The principal scheme of the distribution of vegetation cover elements and the disposition of functional zones on catena are shown on block-diagram (fig. 1).


2021 ◽  
Author(s):  
Anik Dutta ◽  
Fanny E. Hartmann ◽  
Carolina Sardinha Francisco ◽  
Bruce A. McDonald ◽  
Daniel Croll

AbstractThe adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.


2021 ◽  
Vol 177 ◽  
pp. 110944
Author(s):  
Mohsin Irshad ◽  
Ricardo Britto ◽  
Kai Petersen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document