Geobotanical mapping
Latest Publications


TOTAL DOCUMENTS

243
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

Published By Komarov Botanical Institute Of The Russian Academy Of Sciences

0235-4373

2020 ◽  
pp. 78-98
Author(s):  
T. V. Kotova

Proceedings of the International conference (ИнтерКарто. ИнтерГИС, Russia) devoted to geographical information systems for sustainable development of territories have been published annually since 1994. The articles discuss theoretical and methodological aspects of geoinformation support for environmental, economic and social aspects of sustainable de­velop­ment, issues of geoinformatics, cartography, remote sensing of the Earth, problems of environmental sustainability and environmental impact assessment. Over a quarter of a century, the conference proceedings got more than 125 articles related to the use of geoinformation technologies to the study and mapping of vegetation. The review of proceedings gives the concrete examples how to solve problems of vegetation mapping using GIS, it is focused on publications providing some examples of GIS appli­cation to the vegetation studies. The review is organized into thematic sections according the field of application of Geoinformatics: 1.Vegetation, 2. Dynamics, state and ecological functions of vegetation, 3. Biodiversity and its assessment, 4. Plant resources, 5. Monitoring of vegetation. The Vegetation section contains publications on vegetation studies and mapping performed for some regions of Russia — the North of the Far East, the Republic of Sakha (Yaku­tia), the Tyva Republic, Central Siberia, and others. More than half of the articles are devoted to vegetation dynamics, state and ecological functions of vegetation at different hierarchical levels. Some papers present the results of the studies based on new types of information sources (photographs) and visualization methods (animation). The use of geoinformation technologies to study biological diversity was included in the agenda of five conference sessions and later reflected in more than ten publications. They cover the development and creation of GIS, the use of geoinformation technologies for the analysis, assessment and mapping of biodiversity, for its monitoring and conservation. Quite a large number of articles are devoted to the study of forest resources. GIS technologies were used to solve problems of forest management, cartometric analysis of forested areas, determination of taxation indicators, systematization of forest conditions, etc. Examples of geoinformation versatile research for medicinal plant resources are given to assess their quality, resources and productivity in the region, to identify growing areas, including ones to be protected. Most of the published materials concerning to vegetation monitoring mainly relate to forests and forest management.


2020 ◽  
pp. 24-38
Author(s):  
I. G. Borisova

The Norsky State Nature Reserve is located in Selemdzhinsky district of the Amurskaya oblast. Its area is 211 168 ha. Currently the flora of the Norsky Nature Reserve is studied in details. A species list has been published and an analysis of the flora has been made (Starchenko, Chuvasheva, 1993; Veklich, 2009). The vegetation cover is poorly studied; so far no geobotanical map of the Reserve has been compiled. Only the overview map (scale 1 : 2 500 000) of the vegetation of the Amur basin (1969) gives an idea of the vegetation as a whole. The climatic characteristics of the territory and the complex relief determine the diversity of plant habitats and their communities. The climate of the Norsky Reserve is continental with monsoon features and even ultracontinental (after A. I. Kaigorodov (1955). The modern relief of the Reserve includes wide floodplains of Nora and Selemdzha rivers, accumulative delta-terraces plain, Norskaya accumulative denudation plain (Geomorphologiya..., 1973) and hills. According to the latest botanical and geographical zoning of the Amurskaya oblast, the Norsky Reserve belongs to the Mamynskiy and Ulmsko-Aldikonskiy districts of the Turan-Mamyn province of the Manchurian subdistrict of the East Asian area (Borisova,Starchenko, 2018). The province belongs to southern taiga with some elements of nemoral forests (Quercus mongolica, Tilia amurensis and etc.) along the valleys of Selemdzha River and its major tributaries. The southern taiga includes different larch forests (often disturbed), derived birch-larch forests with Pinus sylvestris, Picea ajanensis and Abies nephrolepis. The presence of nemoral species in forest cenoses increases in the direction from north to south. A province peculiarity is the wide distribution of larch peatmoss forests, swamps and wet meadows. The scientific-reference typological map of vegetation on a medium scale (1 : 300 000) was compiled for the Norsky Nature Reserve for the first time. It shows spatial patterns of vegetation distribution in connection with the natural features of the territory (Fig. 5). The vegetation map legend is based on an ecologic and phytocoenotic classification. A zonal distribution of plant communities is presented in the legend. Plant communities are divided into some categories: dark-coniferous, light-coniferous and derived forests, which are represented as formations. The main cartographic units are groups of associations and their various combinations. The legend shows the vegetation of floodplains, rocks, and disturbed areas. Vegetation divisions are represented on the vegetation map by seventeen colors and one extra scale sign. All symbols have their own serial number, which is marked in the map legend. The largest areas on the territory of the Reserve are occupied by larch forests — 42 % (Fig. 6). The forested territory as a whole occupies 36.5 %, of which the largest areas are rhododendron larch (9.7 %) and floodplain (9.5 %) forests. Ledum larch and moss-shrub forests occupy 5.7 %. Larch mixed-grass-shrub forests cover some small areas (2.0 %). Sub-taiga larch forests with nemoral grasses and often with oak and black birch trees occupy 0.6 %. Pine and larch-pine forests extend 1.3 % of the Reserve’s area. Fir-spruce forests on watersheds have limited distribution — about 1 %. They are a chain of ecologic-dynamic series on floodplain occupying 2.7 % of the Reserve’s area. To conclude, the vegetation cover of the Norsky Nature Reserve reflects the zonal and provincial features of the territory.


2020 ◽  
pp. 39-50
Author(s):  
V. N. Khramtsov

Identification of valuable biotopes was carried out on the example of a small territory —the “Gagarka” forest park, located on the Northern coast of the Gulf of Finland within the borders of St. Petersburg (Fig. 1). Field data on landscapes, vegetation, flora and fauna were collected in 2018 to proof the need to create a specially protected natural territory of regional significance. The study area of 58.7 ha is an accumulative sea terrace with absolute elevations not exceeding 2.5 m above sea level. Despite of small area size, the vegetation is quite diverse and it is represented by the coniferous (spruce and pine) forests, several types of black alder forests, tree and shrub fens, littoral meadows, coastal and aquatic vegetation. Rare species of herbaceous plants and shrubs listed in the Red books of the Russian Federation (Krasnaya…, 2008) and St. Petersburg (Krasnaya…, 2018) are recorded and they often dominate in the plant communities. The preservation of biological diversity may be successful only if the landscapes and the biotopes hosting plant and animal species, including rare ones, are protected. Objects of protection can be both rare and typical ones for the regional biotopes. The environmental value of biotopes of the “Gagarka” forest park was assessed according to the following criteria: ecotopic (areas with rare and specific landforms, soils, hydrochemical regime), geobotanical (the presence of primary plant communities, rare plant communities; widespread, but with a tendency to reduce the area as a result of natural or anthropogenic impacts), floristic (the presence of rare species and species located on the border of their ranges), faunistic (the pre­sence of rare animal species, the species richness of fauna, the presence of permanent habitats of animals and birds, as well as biotopes used in certain seasons: during breeding, nesting, molting and migration). In addition, the compliance of biotopes with the European habitat classification EUNIS (European Nature Information System) was taken into account (Davies et al., 2004, EUNIS, 2018). Plant communities are the main indicator of habitats, and their borders mark the boundaries of habitats. In this regard, the geobotanical map (Fig. 2) is the basis for creating a map of biotopes. In addition to the geobotanical map, the map of actual landscapes, the map of the locations of rare plant species, and faunistic materials were used to create a map of valuable biotopes (Materialy…, 2018). It shows 6 types of habitats, that are particularly important for the conservation of biological and biotopic diversity (Fig. 3). All valuable habitats of the “Gagarka” forest park are located in the littoral zone of the Gulf of Finland and near its coast. They are grouped into 4 categories: black alder forests as a model of natural tree communities of the Littorina terrace and habitats of rare plant and animal species, coastal fens as rare plant communities on the territory of St. Petersburg and habitats of rare plant species, littoral meadows as rare plant communities on the territory of St. Petersburg and habitats of rare plant and animal species, shallow waters of the Gulf of Finland as habitats with highly productive communities of macrophytes, rare plant species, with a large species diversity and a high number of birds, including rare ones. The creation of new protected area “Gagarka” is necessary to preserve the habitats and rare species that grow and live here.


2020 ◽  
pp. 3-23
Author(s):  
Yu. A. Semenishchenkov ◽  
R. S. Korsikov

The results of the comparative analysis of traditional forest typology data and the data of floristic classification by the J. Braun-Blanquet approach for large-scale mapping of forest vegetation from the Southern Nechernozemye of Russia are presented. 3 model forest areas located in the forestries in borders of different botanic-geographical districts with specific climatic and edaphic conditions have been chosen to make the comparative analysis of cartographic materials (Bryansk and Smolensk Regions). A comparison of existing afforestation plans and created geobotanical maps demonstrates the difference in the number of recognized typological units. In all cases, a smaller number of units are noted for the geobotanical maps with a scale 1 : 25 000. A decrease in the number of typological units can be explain by the lack of information on the age of tree stands. Another reason is, probably, the assignment of some forest stands with the predominance of different indigenous species to a single association. However, the same typological units, distinguished by the predominance of tree species, may correspond to different units of floristic classification, which may increase the number of typological units on the geobotanical map. Some features of the Braun-Blanquet approach such as the allocation of units, primarily based on a comparison of the floristic composition of plant communities, allows attributing both natural stands and forest cultures to a single syntaxon. This also reduces the number of typological units on the geobotanical map. The plans of afforestation show the present-day species composition and the age of the studied stands, but the dynamic interrelations of forest communities are not reflected there. Therefore, it is more effective to reflect the dynamics of vegetation of forest communities in accordance with the methodology adopted when creating geobotanical maps. In this case, the succession state of communities and their links to classification units of higher ranks has been taken into account by the allocation of temporary facies with the predominance of small-leaved species at the site of indigenous broad-leaved or coniferous forests. The deductive approach with the identification of non-rank «communities» also makes it possible to separate into separate syntaxa and time-unstable, unformed or poorly floristic communities. Typically, such forests are formed by coniferous cultures in the zone of deciduous forests. The unformed «semi-forest» communities in the lowland swamps are also placed into the same category. They are often formed after felling, initiating or intensifying bogging under conditions of fluctuating moisture. The use of a single colorimetric scheme for forest stands in different climatic and edaphic conditions, reflected in the TLU (forest conditions) system, can be considered not quite correct. Stands with the predominance of the same species can correspond to different zonal-conditioned TLUs. At the same time, communities of some syntaxomomical taxa of floristic classification can be formed in different TLUs and their diversity corresponds to the width of the ecological amplitude of the types of plant communities. The more stenotopic communities, the smaller number of TLUs corresponding to their habitats. The afforestation plans and geobotanical maps can be used by different ways in forestry. The traditional afforestation plans are widely used in forestry planning. However, the geobotanical map supplemented with information on the dynamic relationships of stands allows making more efficient prediction of scenarios of forest stand development under known forest conditions. In addition, cartographic materials on the proposed geobotanical basis reflect the general botanical and geographical trends of vegetation, and the syntaxa of the floristic classification always have a certain chorological content, thus, they can be used as zonal-climatic indicators. This feature is reflected in their compliance with TLU, which are specifically distinguished for different natural zones.


2020 ◽  
pp. 51-77
Author(s):  
I. A. Lavrinenko

The presence of appropriate habitats is a necessary condition for the existence of flora and fauna. In recent decades, it has become obvious that monitoring of a state not only populations of rare species, and, first, habitats which for a biota are vital, is necessary (Galdenzi et al., 2012; Rodríguez et al., 2012; Izco, 2015; Keith et al., 2015; etc.). The paper discusses the main European programs and projects devoted to the classification, mapping and inventory of habitats, the formation of lists of biotopes in need of protection (Berne Convention, Habitats Directive, Nature 2000, CORINE, EUNIS, etc.). The implementation of these projects makes a significant contribution to the state environmental policy of European countries. Since the Berne Convention for the Conservation of European Wildlife and Natural Habitats, adopted in 1979 and to date, great importance has been given to the protection of natural habitats in the countries of the European Union. Given their diversity, the most important tasks of diagnostics and monitoring of habitats were the development of classification schemes, inventory and allocation of biotopes that require protection. In 1985, the European Commission initiated the CORINE (Coordination of Information on the Environment) project on the inventory of habitats or biotopes. Its main goal was information support for pan-European and national policies in the field of environmental management, control of their consequences and the proposal of corrective measures. The CORINE habitat classification was first published in 1991 and served as the basis for the selection of habitats listed in Annex I of the 1992 (EU Habitat Directive 92/43/EEC). Since the adoption of this document, known as the “Habitats Directive”, there has been a turning point in the EU in the prospects for the management of biological diversity and the transition of scientific research in the field of ecology and nature protection to a qualitatively new level. Annex I lists 233 European types of natural habitats, including 71 priority ones, that are at risk of extinction and whose natural areas mainly distributed into the EU. The most important achievement of the Habitats Directive is the creation of a network of protected areas in Europe, known as Natura 2000, the world’s largest ecological network created to protect the rarest and most endangered species of plants, animals and habitats in Europe. Natura 2000 is not a Specially Protected Natural Areas system, but also includes all EU protected areas, although most of the land in this network is privately owned. EU member States have an obligation to ensure the sustainable management of all Natura 2000 facilities, regardless of ownership, both environmentally and economically. In 1995, the International Seminar in Paris recognized the need to develop an improved European classification. Since that time, the development of the EUNIS (European Union Nature Information System) habitat classification has begun. This classification covers all European habitats: marine, terrestrial and freshwater, natural, semi-natural and anthropogenic and is currently one of the main systems developed for the study and protection of European Union habitats. Despite its shortcomings, EUNIS serves as a pan-European integration system with certain standards for the identification and characterization of habitats. It ensures compara­bility between national and international classifications. The system provides extensive opportunities to establish relationships (crosswalks) of habitat categories with other pan-European (Habitat Directive, NATURE 2000, CORINE, Palaearctic Habitats) and national classifications. Approaches to mapping habitats at different scales are considered — display on the map physiognomically and topographically expressed territorial units of vegetation using remote sensing, reflecting the ecological characteristics and originality of the earth’s surface. It is noted that the diagnostics and inventory of habitats, their mapping are based, first of all, on the materials of geobotanical mapping. The mapping of habitat types and categories can be presented at different scales. For inventory and monitoring purposes, large-scale mapping is most widely used, which is based on the allocation and diagnosis of territorial units of vegetation. A review of several dozen European projects showed that the scale from 1 : 5 000 to 1 : 50 000 is mainly used to display habitat types on the map (Terrestrial ..., 2014). A smaller scale is used to map the distribution of individual habitat types and categories within wide areas. In this case, a grid with cells of different sizes (from 1 to 10 km2) is often used. One of the main tasks in the study and evaluation of the current state of habitats is the identification and organization of monitoring of biotopes that are under the threat of degradation or complete disappearance under the impact, first of all, of human activities. For this purpose, pan-European and national Red Lists of Habitats are being created, which are taken into account in the development plans of the territories of the EU countries. The problems of classification, mapping and inventory of habitats, the preparation of Red Lists of Habitats are currently among the priority areas of environmental science and make a significant contribution to the state environmental policy of the EU countries. The high efficiency of this approach at all levels, from municipal to European, is evidenced by the large number of programs implemented in Europe in the last decade, which were funded both at the national and EU level. Considering that such an approach underlies the formation of an environmentally orien­ted economy and environmental protection activities in many European countries, it seems promising to implement it in the Russian Federation and, first of all, for the Arctic, as the territory most vulnerable to the impact of anthropogenic and climatic factors. This region is currently experiencing a significant anthropogenic impact due to the development of dozens of hydrocarbon deposits, the construction of industrial facilities and infrastructure elements, and numerous oil and gas pipelines. At the same time, the Russian Arctic is a territory of high concentration of species of biota in need of protection, numerous populations of waterfowl and mammals (polar bear, walrus), many of which have international protection status. Due to the high sensitivity to anthropogenic and climatic factors, not only individual protected areas, but the entire territory of the Russian Arctic should be under constant control by the state. In the context of industrial development of Arctic territories, it is necessary to monitor the state not only of populations of certain species of plants and animals in need of protection, but especially habitats that are vital to them. Among the top-priority tasks is the preparation of a list of habitats in the Russian Arctic requiring constant control and protection by the state (Red List of Russian Arctic Habitats). These include areas of concentration of populations of Red Data Book species, the most important resource species and species that are of high importance for maintaining homeostasis and supporting the potential of Arctic ecosystems. The creation of such a list will significantly complement the system of protected areas in the Arctic, since it will allow taking into account and monitoring the state of not only the natural complexes of the existing reserves, but also habitats outside this system, which are of great importance for the preservation of arctic ecosystems and biota. Giving them the status of protected areas of a certain rank, given their multiplicity and dispersion in the territory, is certainly impractical. However, when planning economic activities, special attention will need to be paid to the presence of Red List Habitats and to monitor their condition. The latter, taking into account Remote Sensing technologies, is now quite feasible, and allows for large-scale monitoring in such a vast area.


2019 ◽  
pp. 68-72
Author(s):  
E. A. Volkova

A monograph “Vegetation and biotopes of the “Narochansky” National Park was published in Minsk, Belarus in 2017, edited by A. V. Pugachevsky (Grummo et al., 2017). It includes the Map of terrestrial vegetation (S. 1 : 60 000) and the Map of biotopes (S. 1 : 60 000). Some small-scale maps such as the Map of changes in forest cover of the “Narochansky” National Park for the period 1985–2016, the Map of forest loss in the “Narochansky” National Park for the period 1985–2016 and a series of inventory and analytical maps on the basin of the Naroch Lake are given. This monograph can be considered as a small regional Atlas with detailed explanatory texts to the maps. It presents the experience on vegetation mapping accumulated in the Laboratory of Geobotany and Vegetation mapping of the Institute of Experimental Botany of the National Academy of Sciences of Belarus. Despite some critical comments, mainly concerning the biotope map, this publication of Belarusian geobotanists deserves an approval. They received the full answers to the questions posed: “What do we protect?” and “What is a current state of the vegetation of the National Park and the main trends of its dynamics? Cartographic design is made at a high level; the maps have both scientific and practical importance in the planning of environmental and economic activities.


2019 ◽  
pp. 57-67
Author(s):  
T. A. Sokolova

During an ecological expertise the vegetation of Tuzla Spit and Tuzla Island, located in the middle part of the Kerch Strait (Fig. 1), was studied. This area is unique in terms of biological diversity and a presence of rare species (Ermolaeva et al., 2018). The study is based on 150 geobotanical relevés. Field data, topographic maps, and high-resolution satellite images were used in the vegetation mapping. The total area of the study is 383 hectares. There are the following hierarchical levels in the legend to the vegetation map: types of vegetation and classes of associations. A mapping unit is an association described according to the Braun-Blanquet system (Braun-Blanquet, 1964). The highest divisions of the legend are the types of vegetation: aquatic, coastal-aquatic, halophytic, psammophytic, steppe; they are given according to the ecological-phytocoenotic classification. Within the types of vegetation, classes of associations are given according to the ecological-floristic classification. 26 main numbers of the legend display the vegetation cover on the map. Geobotanical map reflects the state of vegetation in 2015 (Fig. 2). The vegetation of the island is heterogeneous. Plant communities as narrow stripes replace each other depending on the degree of moisture, salinity and orography. The sea currents have a great influence on the vegetation. In the southern part of the Taman Bay, suspension flows are directed from the South to the North and round the island, which leads to the “washing-up” of the southeastern part of the island represented by shallow waters and estuaries. It is occupied mainly by halophytic vegetation, the main dominants of plant communities are Juncus maritimus, Phragmites australis, Puccinellia distans, Bassia hirsuta, Salicornia pe­rennans, S. prostrata, Suaeda salsa, Elaeagnus angustifolia, Elytrigia elongata, Tripolium vulgare. The northwestern part of the strait is occupied by the area of jet streams of suspensions coming from the North to the South from the Sea of Azov. This caused the accumulation of sand-shell material in the northern and northwestern parts of the island forming raised areas co­vered by psammophytic and steppe communities. The main dominant species here are Crambe maritima var. pontica, Cakile euxina, Eryngium maritimum, Lactuca tatarica, Salsola tragus, Leymus sabulosus, Artemisia arenaria, Gypsophila perfoliata. As a result of the transport crossing construction, the vegetation cover was heavily transformed. The vegetation map of Tuzla Spit and Island for 2019 shows the changes that have occurred — the drainage of the territory and the reduction of the vegetated area (Fig. 3). Distribution of weed species, in particular Ambrosia artemisiifolia, is noted. The remained vegetation in the southern part of the Tuzla Spit and the southern part of the Tuzla Island has a great nature conservation value; there are unique plant communities and rare plant species listed in the Red books of different ranks (Red..., 2007, 2008, 2015): Cakile euxina, Crambe maritime, Glaucium flavum, Euphorbia paralias, E. peplis, Eryngium mari­timum, Astrodaucus littoralis, Asparagus maritimus, Centaurea arenaria, Argusia sibirica, Astragalus varius, Verbascum pinnatifidum, Leymus racemosus subsp. sabulosus, Secale sylvestre. There is an obvious need to organize a specially protected natural area in these areas.


2019 ◽  
pp. 39-56 ◽  
Author(s):  
E. A. Volkova ◽  
V. N. Khramtsov

The article is devoted to the vegetation mapping of the “Levashovskiy les”— a large forest-mire massif located in the northern part of St. Petersburg (Fig. 1). It continues a series of articles on the vegetation of existing and proposed specially protected natural areas of St. Petersburg (Volkova, Khramtsov, 2018). Large-scale map of modern vegetation (Fig. 2) is presented; the map legend includes 67 main numbers, the signs and numeric indexes at the numbers made it possible to show 93 mapping units (associations and their variants). Brief description of the main types of plant communities (spruce, pine, birch, aspen, gray alder and black alder forests; raised bogs, transitional mires and fens, floodplain and upland meadows) reveals the content of the legend. Vegetation cover is characterized by the dominance of secondary communities. The main anthropogenic impacts on modern vegetation are following: drainage reclamation, deforestation and former agricultural use, forest fires, gas pipelines, highways. Most of the forest communities are secondary ones; they have grown under the pressure of various anthropogenic factors and at different time. Nowadays an active process of natural regeneration of conife­rous (mainly spruce) trees goes in the forests. Plant community structure and species composition were taken into account as well as their dynamic state. To assess the degree of disturbance of plant communities and the potential for their restoration, the analysis of all mapped vegetation categories with respect to their position in the ranks of restorative successions was made. Then an assessment map “Dynamic state of plant communities” (Fig. 3) was compiled. The map shows following categories of dynamic types of communities: conventionally primary; relatively long-term secondary and stable long-term secondary (Sukachev, 1938; Isachenko, 1964; Karpenko, 1965; Gribova, Isachenko, 1972); short-term secondary that were divided into 3 categories representing different stages of restorative series. Present state of the vegetation cover of the “Levashovskiy les” can be determined by the ratio of the areas of conventionally primary and secondary communities. Areal analysis of dynamic categories of plant communities showed that only a bit more than 20 % of the territory is occupied by conventionally primary communities and about 60 % – by short-term secondary ones with good restorative potential. Without strong anthropogenic and natural disturbances, a significant part of the disturbed plant communities will be able to self-restore to their natural state. The establishment of a specially protected natural area as well as the regulation of conservation regime will support restoration process of nature ecosystems.


2019 ◽  
pp. 73-75
Author(s):  
E. A. Volkova ◽  
V. N. Khramtsov

2019 ◽  
pp. 18-38 ◽  
Author(s):  
D. G. Grummo ◽  
R. V. Tsvirko ◽  
N. A. Zeliankevich ◽  
E. Y. Kulikova ◽  
O. V. Sozinov

In 2013–2018 studies of phytocoenotic diversity were carried out in the territory of the National Park “Belovezhskaya Pushcha” (Belarus). As a result, a classification scheme of vegetation was developed based on the floristic approach (Braun-Blanquet method) and a large-scale (1 : 100 000) geobotanical map was made. The map is compiled on the basis of the field data, analysis of remote sensing data, literary and cartographic sources, land and forest inventory materials. The compilation of this geobotanical map was consisted of 4 stages. 1) The pre-field (cameral) stage included: collection of archive data about the investigated territory, selection of space imagery, primary processing of digital images and data visualization, interpretation, automatic non-controlled classification, preliminary map compilation. 2) Field studies provided for surface interpretation of vegetation based on satellite imagery.In total, 1851 complete geobotanical relevés were made during field studies, including 743 forest, 452 mire, 576 meadow, segetal and ruderal plant communities. 3) The post-field (cameral) stage, including the preparation of the cartographic base; the systematization of field materials; the development of the final legend; the systematization of image standards for creating cartographic models; the controlled classification of images with preliminary segmentation by the method of superpixels (SNIC-Simple Non-Iterative Clustering); assessment reliability of classification results; geometric and geographical generalization; making an original map. 4) Field check (verification) of geobotanical map. During the 2018 field season a vegetation map of the protected area was checked with the compilation of the final reliability protocol. The main unit of the map legend, a syntaxon of the floristic classification of vegetation, is the association, however, along with the association, to display the typology of the vegetation cover, syntaxons of as a higher hierarchical rank (union) and lower (options, facies), as well as rankless communities are used. In establishing the names of associations and subassociations and in comparative analysis various regional works were taken into account (Matuszkiewicz, Matuszkiewicz, 1954; Czerwiński, 1978; Faliński, 1991, 1994а, b; Kwiatkowski, 1994; Bulokhov, Solomeshch, 2003; Semenischenkov, 2014; Lądowe ekosystemy…, 2016; Dubyna et al., 2019;). In the legend, the mapped units reflecting the restoration stages of the association are marked with letter indices. Heterogeneous areas consisting of regularly and repeatedly alternating plant communities are presented on the map as complexes (phytocoenoses-complex). In total, the map legend contains 75 mapped vegetation units, including forest — 40, shrub — 4, mire — 13, meadow and wasteland — 11, ruderal and segetal vegetation — 6, deforestation and disturbed forest habitats — 1. Separate units reflect other lands (water, residential development, etc.) The practical application of the geobotanical map for identifying key (important for biodiversity conservation) habitats and developing a science-based approach to the functional zoning of protected areas is shown.


Sign in / Sign up

Export Citation Format

Share Document