scholarly journals Multi-Objective Multi Time Span Fractional Capacitated Transportation Problem in the Two Echelon Supply Chain with Multiform Items and Mixed Constraints

One of the most useful techniques for the transport companies is multi-level distribution to minimize the cost. This paper presents multi-objective multi time span fractional capacitated transportation problem (MOMTMIFCTP) in the two echelon supply chain with multiform items and mixed constraints. Moreover the fractional objective functions in the supply chain are important because many real life problems are based on the ratio of physical or economical values. The goal of this investigation is to minimize damage cost, labor cost, the cost related to transportation, inventory carrying cost, quality cost and packing cost, also determine an optimal inventory level for the warehouse and distribution centers using fuzzy programming approach through LINGO software.

2019 ◽  
Vol 8 (2S3) ◽  
pp. 728-736

In today’s world supply chain is an integral part of business. This paper proposed a model of environmentally liable multi-objective multi time span fuzzy fractional capacitated transportation problem (ELMOMTHIFFCTP) in the two echelon supply chain with heterogeneous items and mixed constraints. In this model, few objectives are considered as a linear function and few are fractional functions. Especially the objective function related to emission cost is considered as linear fractional objective function. The damage cost, labor cost, packing cost and quality cost are considered as triangular intuitionistic fuzzy numbers. This paper focuses on minimization of damage cost, labor cost, quality cost, packing cost and the ratio related to transportation cost , inventory carrying cost and emission cost of the entire supply chain. An industrial case demonstrates the feasibility of applying the proposed model to real world problem in a two – echelon supply chain under uncertain environment also determine an optimal inventory level for the warehouse and distribution centers using fuzzy programming approach through LINGO software.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amir Rahimzadeh Dehaghani ◽  
Muhammad Nawaz ◽  
Rohullah Sultanie ◽  
Tawiah Kwatekwei Quartey-Papafio

PurposeThis research studies a location-allocation problem considering the m/m/m/k queue model in the blood supply chain network. This supply chain includes three levels of suppliers or donors, main blood centers (laboratories for separation, storage and distribution centers) and demand centers (hospitals and private clinics). Moreover, the proposed model is a multi-objective model including minimizing the total cost of the blood supply chain (the cost of unmet demand and inventory spoilage, the cost of transport between collection centers and the main centers of blood), minimizing the waiting time of donors in blood donating mobile centers, and minimizing the establishment of mobile centers in potential places.Design/methodology/approachSince the problem is multi-objective and NP-Hard, the heuristic algorithm NSGA-II is proposed for Pareto solutions and then the estimation of the parameters of the algorithm is described using the design of experiments. According to the review of the previous research, there are a few pieces of research in the blood supply chain in the field of design queue models and there were few works that tried to use these concepts for designing the blood supply chain networks. Also, in former research, the uncertainty in the number of donors, and also the importance of blood donors has not been considered.FindingsA novel mathematical model guided by the theory of linear programming has been proposed that can help health-care administrators in optimizing the blood supply chain networks.Originality/valueBy building upon solid literature and theory, the current study proposes a novel model for improving the supply chain of blood.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2093
Author(s):  
Sadia Samar Ali ◽  
Haripriya Barman ◽  
Rajbir Kaur ◽  
Hana Tomaskova ◽  
Sankar Kumar Roy

The perishable milk products industry has to deal with multiple pressures such as demand forecasting, price fluctuations, lead time, order batching, and inflated orders along with difficulties of climatic and traffic conditions, storage areas and shipment in unfavorable circumstances. The Indian dairy industry faces immense wattage issue due to improper infrastructure for the cold chain storage facilities, resulting in unsatisfied customers. A study is undertaken to comprehend the supply chain framework that handles perishability issues in production and distribution. Researchers propose a multi-objective mixed-integer non-linear supply chain coordination model under uncertain environments to minimize the cost of transportation, offset wastage of products and neutralize the losses due to insufficiencies of transit and storage amenities. The proposed model is meant for managing the delivery with lesser deterioration losses for producers, warehouses, and retailers. The model considers various costs for holding, halting, discounts on purchased cost, transportation cost for truckload policy under regular and unforeseen circumstances of curfew, and identify the rate of deterioration to know the impact on the cost for all players involved in the SCM framework. To handle uncertainty of objective functions, fuzzy set concepts and the defuzzification method are imposed, and fuzzy non-linear programming algorithms are used to get the single objective function from the defuzzified multi-objective functions. Data analysis is done on Lingo 18.0 software. Rate of deterioration is highest for the warehouse, which indicates that efforts should be made to augment warehouse facilities for less spoilage to reduce losses in cost. Finally, the study ends with main findings, conclusions, limitations and future scopes.


Author(s):  
Sankar Kumar Roy ◽  
Deshabrata Roy Mahapatra

In this chapter, the authors propose a new approach to analyze the Solid Transportation Problem (STP). This new approach considers the multi-choice programming into the cost coefficients of objective function and stochastic programming, which is incorporated in three constraints, namely sources, destinations, and capacities constraints, followed by Cauchy's distribution for solid transportation problem. The multi-choice programming and stochastic programming are combined into a solid transportation problem, and this new problem is called Multi-Choice Stochastic Solid Transportation Problem (MCSSTP). The solution concepts behind the MCSSTP are based on a new transformation technique that will select an appropriate choice from a set of multi-choice, which optimize the objective function. The stochastic constraints of STP converts into deterministic constraints by stochastic programming approach. Finally, the authors construct a non-linear programming problem for MCSSTP, and by solving it, they derive an optimal solution of the specified problem. A realistic example on STP is considered to illustrate the methodology.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1621
Author(s):  
Irfan Ali ◽  
Armin Fügenschuh ◽  
Srikant Gupta ◽  
Umar Muhammad Modibbo

Vendor selection is an established problem in supply chain management. It is regarded as a strategic resource by manufacturers, which must be managed efficiently. Any inappropriate selection of the vendors may lead to severe issues in the supply chain network. Hence, the desire to develop a model that minimizes the combination of transportation, deliveries, and ordering costs under uncertainty situation. In this paper, a multi-objective vendor selection problem under fuzzy environment is solved using a fuzzy goal programming approach. The vendor selection problem was modeled as a multi-objective problem, including three primary objectives of minimizing the transportation cost; the late deliveries; and the net ordering cost subject to constraints related to aggregate demand; vendor capacity; budget allocation; purchasing value; vendors’ quota; and quantity rejected. The proposed model input parameters are considered to be LR fuzzy numbers. The effectiveness of the model is illustrated with simulated data using R statistical package based on a real-life case study which was analyzed using LINGO 16.0 optimization software. The decision on the vendor’s quota allocation and selection under different degree of vagueness in the information was provided. The proposed model can address realistic vendor selection problem in the fuzzy environment and can serve as a useful tool for multi-criteria decision-making in supply chain management.


Sign in / Sign up

Export Citation Format

Share Document